Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Tiago André Soares

2016

Wind offering in energy and reserve markets

Authors
Soares, T; Pinson, P; Morais, H;

Publication
WINDEUROPE SUMMIT 2016

Abstract
The increasing penetration of wind generation in power systems to fulfil the ambitious European targets will make wind power producers to play an even more important role in the future power system. Wind power producers are being incentivized to participate in reserve markets to increase their revenue, since currently wind turbine/farm technologies allow them to provide ancillary services. Thus, wind power producers are to develop offering strategies for participation in both energy and reserve markets, accounting for market rules, while ensuring optimal revenue. We consider a proportional offering strategy to optimally decide upon participation in both markets by maximizing expected revenue from day-ahead decisions while accounting for estimated regulation costs for failing to provide the services. An evaluation of considering the same proportional splitting of energy and reserve in both day ahead and balancing market is performed. A set of numerical examples illustrate the behavior of such strategy. An important conclusion is that the optimal split of the available wind power between energy and reserve strongly depends upon prices and penalties on both market trading floors.

2017

Optimal offering and allocation policies for wind power in energy and reserve markets

Authors
Soares, T; Jensen, TV; Mazzi, N; Pinson, P; Morais, H;

Publication
WIND ENERGY

Abstract
Proliferation of wind power generation is increasingly making this power source an important asset in designs of energy and reserve markets. Intuitively, wind power producers will require the development of new offering strategies that maximize the expected profit in both energy and reserve markets while fulfilling the market rules and its operational limits. In this paper, we implement and exploit the controllability of the proportional control strategy. This strategy allows the splitting of potentially available wind power generation in energy and reserve markets. In addition, we take advantage of better forecast information from the different day-ahead and balancing stages, allowing different shares of energy and reserve in both stages. Under these assumptions, different mathematical methods able to deal with the uncertain nature of wind power generation, namely, stochastic programming, with McCormick relaxation and piecewise linear decision rules are adapted and tested aiming to maximize the expected revenue for participating in both energy and reserve markets, while accounting for estimated balancing costs for failing to provide energy and reserve. A set of numerical examples, as well as a case study based on real data, allow the analysis and evaluation of the performance and behavior of such techniques. An important conclusion is that the use of the proposed approaches offers a degree of freedom in terms of minimizing balancing costs for the wind power producer strategically to participate in both energy and reserve markets. Copyright (c) 2017 John Wiley & Sons, Ltd.

2018

Active Distribution Grid Management Based on Robust AC Optimal Power Flow

Authors
Soares, T; Bessa, RJ; Pinson, P; Morais, H;

Publication
IEEE TRANSACTIONS ON SMART GRID

Abstract
Further integration of distributed renewable energy sources in distribution systems requires a paradigm change in grid management by the distribution system operators (DSOs). DSOs are currently moving to an operational planning approach based on activating flexibility from distributed energy resources in day/hour-ahead stages. This paper follows the DSO trends by proposing a methodology for active grid management by which robust optimization is applied to accommodate spatial-temporal uncertainty. The proposed method entails the use of a multi-period AC-OPF, ensuring a reliable solution for the DSO. Wind and PV uncertainty is modeled based on spatial-temporal trajectories, while a convex hull technique to define uncertainty sets for the model is used. A case study based on real generation data allows illustration and discussion of the properties of the model. An important conclusion is that the method allows the DSO to increase system reliability in the real-time operation. However, the computational effort grows with increases in system robustness.

2015

Cost allocation model for distribution networks considering high penetration of distributed energy resources

Authors
Soares, T; Pereira, F; Morais, H; Vale, Z;

Publication
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
The high penetration of distributed energy resources (DER) in distribution networks and the competitive environment of electricity markets impose the use of new approaches in several domains. The network cost allocation, traditionally used in transmission networks, should be adapted and used in the distribution networks considering the specifications of the connected resources. The main goal is to develop a fairer methodology trying to distribute the distribution network use costs to all players which are using the network in each period. In this paper, a model considering different type of costs (fixed, losses, and congestion costs) is proposed comprising the use of a large set of DER, namely distributed generation (DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehicles with capability of discharging energy to the network, which is known as vehicle-to-grid (V2G). The proposed model includes three distinct phases of operation. The first phase of the model consists in an economic dispatch based on an AC optimal power flow (AC-OPF); in the second phase Kirschen's and Bialek's tracing algorithms are used and compared to evaluate the impact of each resource in the network. Finally, the MW-mile method is used in the third phase of the proposed model. A distribution network of 33 buses with large penetration of DER is used to illustrate the application of the proposed model.

2016

Simulated annealing to handle energy and ancillary services joint management considering electric vehicles

Authors
Sousa, T; Soares, T; Morals, H; Castro, R; Vale, Z;

Publication
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
The massive use of distributed generation and electric vehicles will lead to a more complex management of the power system, requiring new approaches to be used in the optimal resource scheduling field. Electric vehicles with vehicle-to-grid capability can be useful for the aggregator players in the mitigation of renewable sources intermittency and in the ancillary services procurement. In this paper, an energy and ancillary services joint management model is proposed. A simulated annealing approach is used to solve the joint management for the following day, considering the minimization of the aggregator total operation costs. The case study considers a distribution network with 33-bus, 66 distributed generation and 2000 electric vehicles. The proposed simulated annealing is matched with a deterministic approach allowing an effective and efficient comparison. The simulated annealing presents a solution closer to the one obtained in the deterministic approach (1.03% error), yet representing 0.06% of the deterministic approach CPU time performance.

2014

Definition of Distribution Network Tariffs Considering Distribution Generation and Demand Response

Authors
Soares, T; Faria, P; Vale, Z; Morais, H;

Publication
2014 IEEE PES T&D CONFERENCE AND EXPOSITION

Abstract
The use of distribution networks in the current scenario of high penetration of Distributed Generation (DG) is a problem of great importance. In the competitive environment of electricity markets and smart grids, Demand Response (DR) is also gaining notable impact with several benefits for the whole system. The work presented in this paper comprises a methodology able to define the cost allocation in distribution networks considering large integration of DG and DR resources. The proposed methodology is divided into three phases and it is based on an AC Optimal Power Flow (OPF) including the determination of topological distribution factors, and consequent application of the MW-mile method. The application of the proposed tariffs definition methodology is illustrated in a distribution network with 33 buses, 66 DG units, and 32 consumers with DR capacity.

  • 1
  • 11