Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Paulo Caldas

2025

Flexible Wearable Optical Sensor Based on a Balloon-like Interferometer to Breathing Monitoring

Authors
Costa, N; Cardoso, HR; de Souza, FC; Caldas, P; Rocco Giraldi, MT; Frazão, O; Santos, L; Costa, CWA;

Publication
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
A flexible wearable sensor utilizing a balloon-shaped interferometer structure, created from a bent standard single-mode fiber and a 3D-printed piece, was introduced and shown for respiratory monitoring. The interferometer is a compact, cost-effective, and easily fabricated sensor. The fiber’s curvature causes interference between the core and cladding modes, which in turn results in the sensor operation. In the balloon-shaped curving section, light traversing the core partially escapes and interacts with the cladding. The preliminary results demonstrate an average displacement of 9.3 nm and the capability to evaluate breathing rate. © 2025 SPIE.

2025

Design and testing of a probe for diameter variation measurement based on fiber Bragg grating combined with additive manufacturing

Authors
Cardoso, VHR; Caldas, P; Giraldi, MTR; Fernandes, CS; Frazao, O; Costa, JCWA; Santos, JL;

Publication
SENSORS AND ACTUATORS A-PHYSICAL

Abstract
A sensor based on the fiber Bragg grating (FBG) and additive manufacturing for diameter variation measurement is proposed and experimentally demonstrated in this work. Two designs were proposed: a FBG alone and a FBG in series with a spring. Three tests were developed for each design, and at the end, the statistical treatment was performed. The designs were fabricated using a 3D printer, and the FBG sensor is embedded. The results demonstrated that the structures proposed in this work can be used to monitor diameter variation, among other applications. The sensors, with and without spring in series, presented sensitivities of 0.0671 nm/mm and 0.5116 nm/mm, respectively, with a good linear response greater than 0.99.

2024

Coil-shaped Optical Fiber Sensor for Compression Measurements

Authors
Romeiro, F; Cardoso, HR; De Souza, FC; Caldas, P; Giraldi, MR; Frazão, O; Santos, L; Costa, CWA;

Publication
EPJ Web of Conferences

Abstract
This study investigated the effectiveness of a coil-shaped optical fiber interferometric sensor, with a diameter of 13 mm, for measuring compression. The sensor's design utilizes the principles of interferometry to create a pattern that changes with applied pressure. This configuration significantly amplifies the sensor's sensitivity to compression due to the extended optical path length within the compact form factor. The experimental results demonstrated that even small compressive forces caused detectable alterations in the interference pattern, allowing for precise quantification of pressure changes. The 13 mm diameter proved to be particularly advantageous, providing a balance between sensitivity and practical integration into various systems, from structural health monitoring to biomedical devices. This study also highlights the sensor's robustness against electromagnetic interference and environmental variations, attributing this to the intrinsic properties of optical fiber. Overall, the findings suggest that coil-shaped optical fiber interferometric sensors are highly effective for accurate and reliable compression sensing, with potential for broad application across multiple industries. © The Authors.

  • 13
  • 13