Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by André Delgado Gomes

2018

A Brief Review of New Fiber Microsphere Geometries

Authors
Gomes, AD; Monteiro, CS; Silveira, B; Frazao, O;

Publication
FIBERS

Abstract
A brief review of new fiber microsphere geometries is presented. Simple microspheres working as Fabry-Perot cavities are interrogated in reflection and in transmission. Two microspheres were also spliced together, and subjected to different physical parameters. These structures are an alternative solution for load measurement and, when read in transmission, it is also possible to apply strain. Moreover, the structure is capable of being used under extreme ambient temperatures up to 900 degrees C. Random signal in cleaved microspheres was demonstrated with the possibility of using it for random laser or sensing applications. All this work was developed at the Centre for Applied Photonics, INESC TEC.

2018

Bunimovich Stadium-Like Resonator for Randomized Fiber Laser Operation

Authors
Silveira, B; Gomes, A; Becker, M; Schneidewind, H; Frazao, O;

Publication
PHOTONICS

Abstract
A silica resonator was demonstrated for random laser generation. The resonator consisted of a conventional microsphere fabricated in an optical fiber tip through electric arc discharge, and modifications to its geometry were carried out to create asymmetry inside the silica structure. The resulting Bunimovich stadium-like microsphere promotes multiple reflections with the boundaries, following the stochastic properties of dynamic billiards. The interference of the multiple scattered beams generates a random signal whose intensity was increased by sputter-coating the microstadium with a gold thin film. The random signal is amplified using an erbium-doped fiber amplifier (EDFA) in a ring cavity configuration with feedback, and lasing is identified as temporal and spectral random variations of the signal between consecutive measurements.

2018

Optical fiber probe for viscosity measurements

Authors
Gomes, AD; Kobelke, J; Bierlich, J; Schuster, K; Bartelt, H; Frazão, O;

Publication
Optics InfoBase Conference Papers

Abstract
An optical fiber probe was developed for viscosity measurements. The sensor acts as a two-wave interferometer, sensible to the position of the fluid inside the cavity. Viscosity is measured through the fluid evacuation velocity. © OSA 2018 © 2018 The Author(s)

2018

Multi-Path Interferometer Structures with Cleaved Silica Microspheres

Authors
Gomes, AD; Silveira, B; Karami, F; Zibaii, MI; Latifi, H; Dellith, J; Becker, M; Rothhardt, M; Bartelt, H; Frazao, O;

Publication
INTERFEROMETRY XIX

Abstract
Two multi-path interferometers were developed using cleaved silica microspheres. A microsphere on top of a singlemode fiber tip was cleaved with a focused ion beam. The asymmetry introduced in the structure generates a new set of optical paths due to random reflections inside the microsphere. The obtained reflection spectrum presents a random-like interferometric behavior with strong spectral modulation of around 3 dB amplitude. Two distinct regions can be observed when a fast Fourier transform is applied. The first involves two cavities at a lower frequency and the second region involves a band of frequencies that is originated by the random interferometric reflections. These two spectral characteristics can be separated using low-pass and high-pass filters, respectively. A correlation method was used to obtain a temperature response from the two-cavity component. A similar structure was also created in a microsphere of multimode fiber. The microsphere was cleaved by polishing the structure with a certain angle. The interference between the different optical paths can be seen as the superposition of several two-wave interferometers, which can be discriminated through signal processing. Temperature sensing was also explored with this structure. The sensitivity to temperature is more than 3-fold for smaller cavities. Moreover, a sensitivity enhancement is also verified if a correlation method is used.

2019

Multimode Fabry-Perot Interferometer Probe Based on Vernier Effect for Enhanced Temperature Sensing

Authors
Gomes, AD; Becker, M; Dellith, J; Zibaii, MI; Latifi, H; Rothhardt, M; Bartelt, H; Frazao, O;

Publication
SENSORS

Abstract
New miniaturized sensors for biological and medical applications must be adapted to the measuring environments and they should provide a high measurement resolution to sense small changes. The Vernier effect is an effective way of magnifying the sensitivity of a device, allowing for higher resolution sensing. We applied this concept to the development of a small-size optical fiber Fabry-Perot interferometer probe that presents more than 60-fold higher sensitivity to temperature than the normal Fabry-Perot interferometer without the Vernier effect. This enables the sensor to reach higher temperature resolutions. The silica Fabry-Perot interferometer is created by focused ion beam milling of the end of a tapered multimode fiber. Multiple Fabry-Perot interferometers with shifted frequencies are generated in the cavity due to the presence of multiple modes. The reflection spectrum shows two main components in the Fast Fourier transform that give rise to the Vernier effect. The superposition of these components presents an enhancement of sensitivity to temperature. The same effect is also obtained by monitoring the reflection spectrum node without any filtering. A temperature sensitivity of -654 pm/degrees C was obtained between 30 degrees C and 120 degrees C, with an experimental resolution of 0.14 degrees C. Stability measurements are also reported.

2019

Microfiber Knot Resonators for Sensing Applications

Authors
Gomes, AD; Frazao, O;

Publication
OPTICS, PHOTONICS AND LASER TECHNOLOGY 2017

Abstract
Microfiber knot resonators are widely applied in many different fields of action, of which an important one is the optical sensing. Microfiber knot resonators can easily be used to sense the external medium. The large evanescent field of light increase the interaction of light with the surrounding medium, tuning the resonance conditions of the structure. In some cases, the ability of light to give several turns in the microfiber knot resonator allows for greater interaction with deposited materials, providing an enhancement in the detection capability. So far a wide variety of physical and chemical parameters have been possible to measure using microfiber knot resonators. However, new developments and improvements are still being done in this field. In this chapter, a review on sensing with microfiber knot resonators is presented, with particular emphasis on the application of these structures as temperature and refractive index sensors. A detailed analysis on the properties of these structures and different assembling configurations is presented. An important discussion regarding the sensor stability is presented, as well as alternatives to increase the device robustness. An overview on the recent developments in coated microfiber knot resonators is also addressed. In the end, other microfiber knot configurations are explored and discussed.

  • 3
  • 5