Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Carmo Vilas Boas

2021

Video-EEG and PerceptTM PC Deep Brain Neurostimulator Fine-Grained Synchronization for Multimodal Neurodata Analysis

Authors
Lopes, EM; Vilas Boas, MD; Rego, R; Santos, A; Cunha, JPS;

Publication
2021 10TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER)

Abstract
Adaptive Deep Brain Stimulation has recently emerged to tackle conventional DBS limitations by measuring disease fluctuations and to adapt stimulation parameter accordingly. In early 2020, Medtronic launched in the European Union the first certified DBS neurostimulator capable of simultaneously stimulate and read signals from the deep brain structures, the PerceptTMPC. In epilepsy, the most common target brain structure is the Anterior Nucleus of Thalamus and the Local Field Potentials analysis requires prior synchronization of data recorded from the Percept PC with video-Electroencephalography (vEEG) equipment. Fine-grained synchronization (sub-second resolution) is mandatory for multimodal neurodata analysis and may be achieved by aligning artefacts perceived in both systems. In this work we study two methods aiming for neurodata streams clock synchronization: one based on DBS stimulation artefacts and another on tapping maneuver artefacts. For this purpose, we studied the data collected from the first epileptic patient that underwent 1-week vEEG-PerceptTMPC monitoring at a Hospital monitoring unit. We found that tapping maneuver-based methodology allowed a more accurate synchronization in relation to the stimulation artefact-based method (0.56s vs. 2.07s absolute average uncertainty). This method was also more complete one since tapping timestamps can be determined by video timeframes and do not require a prior identification of artefacts in EEG data by clinicians.

2021

Supporting the Assessment of Hereditary Transthyretin Amyloidosis Patients Based On 3-D Gait Analysis and Machine Learning

Authors
Vilas Boas, MD; Rocha, AP; Cardoso, MN; Fernandes, JM; Coelho, T; Cunha, JPS;

Publication
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING

Abstract
Hereditary Transthyretin Amyloidosis (vATTR-V30M) is a rare and highly incapacitating sensorimotor neuropathy caused by an inherited mutation (Val30Met), which typically affects gait, among other symptoms. In this context, we investigated the possibility of using machine learning (ML) techniques to build a model(s) that can be used to support the detection of the Val30Met mutation (possibility of developing the disease), as well as symptom onset detection for the disease, given the gait characteristics of a person. These characteristics correspond to 24 gait parameters computed from 3-D body data, provided by a Kinect v2 camera, acquired from a person while walking towards the camera. To build the model(s), different ML algorithms were explored: k-nearest neighbors, decision tree, random forest, support vector machines (SVM), and multilayer perceptron. For a dataset corresponding to 66 subjects (25 healthy controls, 14 asymptomatic mutation carriers, and 27 patients) and several gait cycles per subject, we were able to obtain a model that distinguishes between controls and vATTR-V30M mutation carriers (with or without symptoms) with a mean accuracy of 92% (SVM). We also obtained a model that distinguishes between asymptomatic and symptomatic carriers with a mean accuracy of 98% (SVM). These results are very relevant, since this is the first study that proposes a ML approach to support vATTR-V30M patient assessment based on gait, being a promising foundation for the development of a computer-aided diagnosis tool to help clinicians in the identification and follow-up of this disease. Furthermore, the proposed method may also be used for other neuropathies.

2015

Specific ocular changes in TTR Met30-FAP after liver transplantation

Authors
Ferreira, N; Dias, D; Vilas-Boas, C; Fonseca, I; Coelho, T;

Publication
Orphanet Journal of Rare Diseases

Abstract

2022

Gait Characterization and Analysis of Hereditary Amyloidosis Associated with Transthyretin Patients: A Case Series

Authors
Vilas-Boas, MD; Fonseca, PFP; Sousa, IM; Cardoso, MN; Cunha, JPS; Coelho, T;

Publication
JOURNAL OF CLINICAL MEDICINE

Abstract
Hereditary amyloidosis associated with transthyretin (ATTRv), is a rare autosomal dominant disease characterized by length-dependent symmetric polyneuropathy that has gait impairment as one of its consequences. The gait pattern of V30M ATTRv amyloidosis patients has been described as similar to that of diabetic neuropathy, associated with steppage, but has never been quantitatively characterized. In this study we aim to characterize the gait pattern of patients with V30M ATTRv amyloidosis, thus providing information for a better understanding and potential for supporting diagnosis and disease progression evaluation. We present a case series in which we conducted two gait analyses, 18 months apart, of five V30M ATTRv amyloidosis patients using a 12-camera, marker based, optical system as well as six force platforms. Linear kinematics, ground reaction forces, and angular kinematics results are analyzed for all patients. All patients, except one, showed a delayed toe-off in the second assessment, as well as excessive pelvic rotation, hip extension and external transverse rotation and knee flexion (in stance and swing phases), along with reduced vertical and mediolateral ground reaction forces. The described gait anomalies are not clinically quantified; thus, gait analysis may contribute to the assessment of possible disease progression along with the clinical evaluation.

2022

Corrigendum: Clinical 3-D gait assessment of patients with polyneuropathy associated with hereditary transthyretin amyloidosis

Authors
Vilas-Boas, MdC; Rocha, AP; Cardoso, MN; Fernandes, JM; Coelho, T; Cunha, JPS;

Publication
Frontiers in Neurology

Abstract

2022

Portable RGB-D Camera-Based System for Assessing Gait Impairment Progression in ATTRv Amyloidosis

Authors
Vilas Boas, MD; Rocha, AP; Choupina, HMP; Cardoso, MN; Fernandes, JM; Coelho, T; Cunha, JPS;

Publication
APPLIED SCIENCES-BASEL

Abstract
Hereditary Amyloidosis associated with variant Transthyretin (ATTRv Amyloidosis) is a progressive and highly disabling neurological disorder that affects gait. Quantitative motion analysis is useful for assessing motor function, including gait, in diseases affecting movement. A single markerless RGB-D camera enables 3D full-body motion capture in a less expensive and intrusive, and more portable way than multi-camera marker-based systems. In this study, we examine whether a gait analysis system based on an RGB-D camera can be used to detect significant changes in the gait of ATTRv amyloidosis patients over time, when compared with a 12-camera system. We acquired 3D data provided by both systems from six ATTRv amyloidosis patients, while performing a simple gait task, once (T0) and 18 months later (T1). A direct comparison of systems has already been conducted. In this work, however, for each patient, we investigated if the RGB-D camera system detects statistically significant differences between the two different acquisitions in a similar way to the reference system, and whether it is reliable to use during patients' follow-up. The obtained results show that the differences detected between T0 and T1 for both systems follow the same tendency for 65% of the spatiotemporal gait parameters, and for 38% of the kinematic parameters (38%). The most reliable parameters were: stride duration/length, gait speed (and its variability), and arm/foot swing velocity, all with an almost perfect strength of agreement.

  • 4
  • 5