2022
Authors
Almeida, F; Bernardes, G; Weiû, C;
Publication
Proceedings of the 23rd International Society for Music Information Retrieval Conference, ISMIR 2022
Abstract
The extraction of harmonic information from musical audio is fundamental for several music information retrieval tasks. In this paper, we propose novel harmonic audio features based on the perceptually-inspired tonal interval vector space, computed as the Fourier transform of chroma vectors. Our contribution includes mid-level features for musical dissonance, chromaticity, dyadicity, triadicity, diminished quality, diatonicity, and whole-toneness. Moreover, we quantify the perceptual relationship between short- and long-term harmonic structures, tonal dispersion, harmonic changes, and complexity. Beyond the computation on fixed-size windows, we propose a context-sensitive harmonic segmentation approach. We assess the robustness of the new harmonic features in style classification tasks regarding classical music periods and composers. Our results align with, slightly outperforming, existing features and suggest that other musical properties than those in state-of-the-art literature are partially captured. We discuss the features regarding their musical interpretation and compare the different feature groups regarding their effectiveness for discriminating classical music periods and composers. © F. Almeida, G. Bernardes, and C. Weiû.
2025
Authors
Rodrigues Ferraz Esteves, AR; Campos Magalhães, EM; Bernardes De Almeida, G;
Publication
SAE Technical Papers
Abstract
Silent motors are an excellent strategy to combat noise pollution. Still, they can pose risks for pedestrians who rely on auditory cues for safety and reduce driver awareness due to the absence of the familiar sounds of combustion engines. Sound design for silent motors not only tackles the above issues but goes beyond safety standards towards a user-centered approach by considering how users perceive and interpret sounds. This paper examines the evolving field of sound design for electric vehicles (EVs), focusing on Acoustic Vehicle Alerting Systems (AVAS). The study analyzes existing AVAS, classifying them into different groups according to their design characteristics, from technical concerns and approaches to aesthetic properties. Based on the proposed classification, an (adaptive) sound design methodology, and concept for AVAS are proposed based on state-of-the-art technologies and tools (APIs), like Wwise Automotive, and integration through a functional prototype within a virtual environment. We validate our solution by conducting user tests focusing on EV sound perception and preferences in rural and urban environments. Results showed participants preferred nature-like and melodic sounds with a wide range of frequencies, emphasizing 1000Hz, in rural areas, for the AVAS. For the interior experience, melodic, reliable, and relaxing sounds with a frequency range from 200Hz to 500Hz. In urban areas, melodic, futuristic, but not overpowering sounds (80Hz to 700Hz) with balanced frequencies at high speeds were chosen for the car's exterior. In the interior, melodic, futuristic, and combustion engine-like sounds with a low frequencies background and higher frequencies at high speeds were also preferred. © 2025 SAE International. All Rights Reserved.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.