Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by C-BER

2020

IHandU: A novel quantitative wrist rigidity evaluation device for deep brain stimulation surgery

Authors
Murias Lopes, E; Vilas Boas, MD; Dias, D; Rosas, MJ; Vaz, R; Silva Cunha, JP;

Publication
Sensors (Switzerland)

Abstract
Deep brain stimulation (DBS) surgery is the gold standard therapeutic intervention in Parkinson’s disease (PD) with motor complications, notwithstanding drug therapy. In the intraoperative evaluation of DBS’s efficacy, neurologists impose a passive wrist flexion movement and qualitatively describe the perceived decrease in rigidity under different stimulation parameters and electrode positions. To tackle this subjectivity, we designed a wearable device to quantitatively evaluate the wrist rigidity changes during the neurosurgery procedure, supporting physicians in decision-making when setting the stimulation parameters and reducing surgery time. This system comprises a gyroscope sensor embedded in a textile band for patient’s hand, communicating to a smartphone via Bluetooth and has been evaluated on three datasets, showing an average accuracy of 80%. In this work, we present a system that has seen four iterations since 2015, improving on accuracy, usability and reliability. We aim to review the work done so far, outlining the iHandU system evolution, as well as the main challenges, lessons learned, and future steps to improve it. We also introduce the last version (iHandU 4.0), currently used in DBS surgeries at São João Hospital in Portugal. © 2020 by the authors.

2020

iLoF: An intelligent Lab on Fiber Approach for Human Cancer Single-Cell Type Identification

Authors
Paiva, JS; Jorge, PAS; Ribeiro, RSR; Balmaña, M; Campos, D; Mereiter, S; Jin, C; Karlsson, NG; Sampaio, P; Reis, CA; Cunha, JPS;

Publication
Scientific reports

Abstract
With the advent of personalized medicine, there is a movement to develop "smaller" and "smarter" microdevices that are able to distinguish similar cancer subtypes. Tumor cells display major differences when compared to their natural counterparts, due to alterations in fundamental cellular processes such as glycosylation. Glycans are involved in tumor cell biology and they have been considered to be suitable cancer biomarkers. Thus, more selective cancer screening assays can be developed through the detection of specific altered glycans on the surface of circulating cancer cells. Currently, this is only possible through time-consuming assays. In this work, we propose the "intelligent" Lab on Fiber (iLoF) device, that has a high-resolution, and which is a fast and portable method for tumor single-cell type identification and isolation. We apply an Artificial Intelligence approach to the back-scattered signal arising from a trapped cell by a micro-lensed optical fiber. As a proof of concept, we show that iLoF is able to discriminate two human cancer cell models sharing the same genetic background but displaying a different surface glycosylation profile with an accuracy above 90% and a speed rate of 2.3 seconds. We envision the incorporation of the iLoF in an easy-to-operate microchip for cancer identification, which would allow further biological characterization of the captured circulating live cells.

2020

SnapKi—An Inertial Easy-to-Adapt Wearable Textile Device for Movement Quantification of Neurological Patients

Authors
Oliveira, A; Dias, D; Lopes, EM; Vilas Boas, MDC; Cunha, JPS;

Publication
Sensors

Abstract
The development of wearable health systems has been the focus of many researchers who aim to find solutions in healthcare. Additionally, the large potential of textiles to integrate electronics, together with the comfort and usability they provide, has contributed to the development of smart garments in this area. In the field of neurological disorders with motor impairment, clinicians look for wearable devices that may provide quantification of movement symptoms. Neurological disorders affect different motion abilities thus requiring different needs in movement quantification. With this background we designed and developed an inertial textile-embedded wearable device that is adaptable to different movement-disorders quantification requirements. This adaptative device is composed of a low-power 9-axis inertial unit, a customised textile band and a web and Android cross application used for data collection, debug and calibration. The textile band comprises a snap buttons system that allows the attachment of the inertial unit, as well as its connection with the analog sensors through conductive textile. The resulting system is easily adaptable for quantification of multiple motor symptoms in different parts of the body, such as rigidity, tremor and bradykinesia assessments, gait analysis, among others. In our project, the system was applied for a specific use-case of wrist rigidity quantification during Deep Brain Stimulation surgeries, showing its high versatility and receiving very positive feedback from patients and doctors.

2020

Author Correction: iLoF: An intelligent Lab on Fiber Approach for Human Cancer Single-Cell Type Identification

Authors
Paiva, JS; Jorge, PAS; Ribeiro, RSR; Balmaña, M; Campos, D; Mereiter, S; Jin, C; Karlsson, NG; Sampaio, P; Reis, CA; Cunha, JPS;

Publication
Scientific Reports

Abstract

2020

Automatic lung nodule detection combined with gaze information improves radiologists' screening performance

Authors
Aresta, G; Ramos, I; Campilho, A; Ferreira, C; Pedrosa, J; Araujo, T; Rebelo, J; Negrao, E; Morgado, M; Alves, F; Cunha, A;

Publication
IEEE Journal of Biomedical and Health Informatics

Abstract

2020

IDRiD: Diabetic Retinopathy – Segmentation and Grading Challenge

Authors
Porwal, P; Pachade, S; Kokare, M; Deshmukh, G; Son, J; Bae, W; Liu, LH; Wang, J; Liu, XH; Gao, LX; Wu, TB; Xiao, J; Wang, FY; Yin, BC; Wang, YZ; Danala, G; He, LS; Choi, YH; Lee, YC; Jung, SH; Li, ZY; Sui, XD; Wu, JY; Li, XL; Zhou, T; Toth, J; Bara, A; Kori, A; Chennamsetty, SS; Safwan, M; Alex, V; Lyu, XZ; Cheng, L; Chu, QH; Li, PC; Ji, X; Zhang, SY; Shen, YX; Dai, L; Saha, O; Sathish, R; Melo, T; Araujo, T; Harangi, B; Sheng, B; Fang, RG; Sheet, D; Hajdu, A; Zheng, YJ; Mendonca, AM; Zhang, ST; Campilho, A; Zheng, B; Shen, D; Giancardo, L; Quellec, G; Meriaudeau, F;

Publication
Medical Image Analysis

Abstract

  • 2
  • 75