Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Hugo Miguel Choupina

2019

Validation of a Single RGB-D Camera for Gait Assessment of Polyneuropathy Patients

Authors
Vilas Boas, MD; Rocha, AP; Pereira Choupina, HMP; Cardoso, MN; Fernandes, JM; Coelho, T; Silva Cunha, JPS;

Publication
SENSORS

Abstract
Motion analysis systems based on a single markerless RGB-D camera are more suitable for clinical practice than multi-camera marker-based reference systems. Nevertheless, the validity of RGB-D cameras for motor function assessment in some diseases affecting gait, such as Transthyretin Familial Amyloid Polyneuropathy (TTR-FAP), is yet to be investigated. In this study, the agreement between the Kinect v2 and a reference system for obtaining spatiotemporal and kinematic gait parameters was evaluated in the context of TTR-FAP. 3-D body joint data provided by both systems were acquired from ten TTR-FAP symptomatic patients, while performing ten gait trials. For each gait cycle, we computed several spatiotemporal and kinematic gait parameters. We then determined, for each parameter, the Bland Altman's bias and 95% limits of agreement, as well as the Pearson's and concordance correlation coefficients, between systems. The obtained results show that an affordable, portable and non-invasive system based on an RGB-D camera can accurately obtain most of the studied gait parameters (excellent or good agreement for eleven spatiotemporal and one kinematic). This system can bring more objectivity to motor function assessment of polyneuropathy patients, potentially contributing to an improvement of TTR-FAP treatment and understanding, with great benefits to the patients' quality of life.

2019

Automated and objective measures of gait dynamics in camptocormia Parkinson's Disease subthalamic deep brain stimulation

Authors
Soares, C; Vilas Boas, MD; Lopes, EM; Choupina, H; Soares dos Reis, R; Fitas, D; Silva Cunha, JPS; Monteiro, P; Linhares, P; Rosas, MJ;

Publication
CLINICAL NEUROLOGY AND NEUROSURGERY

Abstract
Objective: Axial motor features are common in Parkinson's disease (PD). These include gait impairment and postural abnormalities, such as camptocormia. The response of these symptoms to deep brain stimulation (DBS) is variable and difficult to assess objectively. For the first time, this study analyzes the treatment outcomes of two PD patients with camptocormia that underwent bilateral subthalamic nucleus (STN)-DBS evaluated with disruptive technologies. Patients and methods: Two patients with PD and camptocormia who underwent STN-DBS were included. Gait parameters were quantitatively assessed before and after surgery by using the NeuroKinect system and the camptocormia angle was measured using the camptoapp. Results: After surgery, patient 1 improved 29 points in the UPDRS-III. His camptocormia angle was 68 degrees before and 38 degrees after surgery. Arm and knee angular amplitudes (117.32 +/- 7.47 vs 134.77 +/- 2.70; 144.51 +/- 7.47 vs 169.08 +/- 3.27) and arm swing (3.59 +/- 2.66 vs 5.40 +/- 1.76 cm) improved when compared with his pre-operative measurements. Patient 2 improved 22 points in the UPDRS-III after surgery. Her camptocormia mostly resolved (47 degrees before to 9 degrees after surgery). Gait analysis revealed improvement of stride length (0.29 +/- 0.03 vs 0.35 +/- 0.03 m), stride width (18.25 +/- 1.16 vs 17.9 +/- 0.84 cm), step velocity (0.91 +/- 0.57 vs 1.33 +/- 0.48 m/s), arm swing (4.51 +/- 1.01 vs 7.38 +/- 2.71 cm) and arm and hip angular amplitudes (131.57 +/- 2.45 degrees vs 137.75 +/- 3.18; 100.51 +/- 1.56 vs 102.18 +/- 1.77 degrees) compared with her preoperative results. Conclusion: The gait parameters and camptocormia of both patients objectively improved after surgery, as assessed by the two quantitative measurement systems. STN-DBS might have a beneficial effect on controlling axial posturing and gait, being a potential surgical treatment for camptocormia in patients with PD. However, further studies are needed to derive adequate selection criteria for this patient population.

2020

Subject Identification Based on Gait Using a RGB-D Camera

Authors
Rocha, AP; Fernandes, JM; Choupina, HMP; Vilas Boas, MC; Cunha, JPS;

Publication
Advances in Intelligent Systems and Computing

Abstract
Biometric authentication (i.e., verification of a given subject’s identity using biological characteristics) relying on gait characteristics obtained in a non-intrusive way can be very useful in the area of security, for smart surveillance and access control. In this contribution, we investigated the possibility of carrying out subject identification based on a predictive model built using machine learning techniques, and features extracted from 3-D body joint data provided by a single low-cost RGB-D camera (Microsoft Kinect v2). We obtained a dataset including 400 gait cycles from 20 healthy subjects, and 25 anthropometric measures and gait parameters per gait cycle. Different machine learning algorithms were explored: k-nearest neighbors, decision tree, random forest, support vector machines, multilayer perceptron, and multilayer perceptron ensemble. The algorithm that led to the model with best trade-off between the considered evaluation metrics was the random forest: overall accuracy of 99%, class accuracy of 100±Â0%, and F 1 score of 99±Â2%. These results show the potential of using a RGB-D camera for subject identification based on quantitative gait analysis. © 2020, Springer Nature Switzerland AG.

2019

TTR-FAP Progression Evaluation Based on Gait Analysis Using a Single RGB-D Camera

Authors
Vilas Boas, MD; Rocha, AP; Pereira Choupina, HMP; Cardoso, M; Fernandes, JM; Coelho, T; Silva Cunha, JPS;

Publication
2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC)

Abstract
Transthyretin Familial Amyloid Polyneuropathy (TTR-FAP) is a rare and disabling neurological disorder caused by, a mutation of the transthyretin gene. One of the disease's characteristics that mostly affects patients' quality of life is its influence on locomotion, with a variable evolution timing. Quantitative motion analysis is useful for assessing motor function, including gait, in diseases affecting movement. However, it is still an evolving field, especially in TTR-FAP, with only a few available studies. A single markerless RGB-D camera pros ides 3-D body joint data in a less expensive, more portable and less intrusive way than reference multi-camera marker-based systems for motion capture. In this contribution, we investigate if a gait analysis system based on a RGB-D camera can be used to detect gait changes over time for a given TTR-FAP patient. 3-D data provided by that system and a reference system were acquired from six TTR-FAP patients, while performing a simple gait task, once and then a year and a half later. For each gait cycle and system, several gait parameters were computed. For each patient, we investigated if the RBG-D camera system is able to detect the existence or not of statistically significant differences between the two different acquisitions (separated by 1.5 years of disease evolution), in a similar way to the reference system. The obtained results show the potential of using a single RGB-D camera to detect relevant changes in spatiotemporal gait parameters (e.g., stride duration and stride length), during TTR-FAP patient follow-up.

2020

Risk factors for delayed autologous breast reconstruction using pedicled TRAM and latissimus dorsi flaps

Authors
Ribeiro, LM; Meireles, RP; Brito, IM; Costa, PM; Rebelo, MA; Barbosa, RF; Choupina, MP; Pinho, CJ; Ribeiro, MP;

Publication
EUROPEAN JOURNAL OF PLASTIC SURGERY

Abstract
Background The purpose of this study was to compare outcomes between patients submitted to pedicled transverse rectus abdominis musculocutaneous (pTRAM) and latissimus dorsi musculocutaneous (LD) flaps for breast reconstructions and to investigate potential risk factors for complications in autologous reconstruction. Methods A retrospective review of delayed autologous breast reconstructions by five surgeons in a single centre was performed. Between 2014 and 2018, 215 women underwent unilateral breast reconstruction with pTRAM or LD flaps. Patient demographics were analyzed including age, body mass index (BMI), smoking, diabetes mellitus, hypertension, radiotherapy and chemotherapy. Patient medical records were reviewed for the length of hospital stay (LOS), volume and duration of breast drainage, volume and duration of donor area drainage, major immediate complications, early and late complications, reinterventions, readmittances and reinterventions for late complications. Results LD reconstruction was associated with longer length of stay, duration of breast and donor area drainage and a higher prevalence of seroma in the donor area (37.8% vs 6.5%). pTRAM breast reconstruction had higher rates of pulmonary embolism and late complications. Age over 60 was a risk factor for immediate major complications. Smoking was associated with increased early complications. Late complications increased when the BMI was above 30. Conclusions Autologous breast reconstruction with pTRAM and LD flaps is safe and offers a long-standing pleasant aesthetic shape. The results of this study show that age over 60, BMI > 30 and smoking increase the complications rate. These patients should be informed about their higher profile risks before proceeding with the reconstruction.

  • 3
  • 3