Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Pedro Jorge

2016

Aptamer-based fiber sensor for thrombin detection

Authors
Coelho, L; Marques Martins de Almeida, JMM; Santos, JL; da Silva Jorge, PAD; Martins, MCL; Viegas, D; Queiros, RB;

Publication
JOURNAL OF BIOMEDICAL OPTICS

Abstract
The detection of thrombin based on aptamer binding is studied using two different optical fiber-based configurations: long period gratings coated with a thin layer of titanium dioxide and surface plasmon resonance devices in optical fibers coated with a multilayer of gold and titanium dioxide. These structures are functionalized and the performance to detect thrombin in the range 10 to 100 nM is compared in transmission mode. The sensitivity to the surrounding refractive index (RI) of the plasmonic device is higher than 3100 nmRIU(-1) in the RI range 1.335 to 1.355, a factor of 20 greater than the sensitivity of the coated grating. The detection of 10 nM of thrombin was accomplished with a wavelength shift of 3.5 nm and a resolution of 0.54 nM. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)

2016

Biosensor for label-free DNA quantification based on functionalized LPGs

Authors
Goncalves, HMR; Moreira, L; Pereira, L; Jorge, P; Gouveia, C; Martins Lopes, P; Fernandes, JRA;

Publication
BIOSENSORS & BIOELECTRONICS

Abstract
A label-free fiber optic biosensor based on a long period grating (LPG) and a basic optical interrogation scheme using off the shelf components is used for the detection of in-situ DNA hybridization. A new methodology is proposed for the determination of the spectral position of the LPG mode resonance. The experimental limit of detection obtained for the DNA was 62 +/- 2 nM and the limit of quantification was 209 +/- 7 nM. The sample specificity was experimentally demonstrated using DNA targets with different base mismatches relatively to the probe and was found that the system has a single base mismatch selectivity.

2016

Compact solutions for optical fiber tweezers using Fresnel Zone and Phase Lenses fabricated using FIB milling

Authors
Rodrigues Ribeiro, RSR; Dahal, P; Guerreiro, A; Jorge, PAS; Viegas, J;

Publication
COMPLEX LIGHT AND OPTICAL FORCES X

Abstract
In this work FZL and FPL fabricated using Focused Ion Beam milling on the top of custom-made optical fibers are presented. Primary, single mode fibers are spliced to a segment of multimode fiber allowing to expand the core region. Subsequently, FZL and FPL with several focusing distances are milled on the top of the fibers. In this regard, the zone and phase plates offer distinct focusing characteristics which are here presented and analyzed. Moreover, the output optical intensity field of the FPL and FZP are evaluated and validated using an implementation of the Finite Differences Time Domain (Lumerical). Lastly, some considerations on the use of the tips as fiber optical tweezers are given.

2015

Curvature sensing using an added-signal in a fiber-optic cavity ring-down system

Authors
Silva, SO; Biswas, P; Bandyopadhyay, S; Jorge, PA; Marques, MB; Frazao, O;

Publication
24TH INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
This work presents a fiber-optic Cavity Ring-Down (CRD) configuration using an added-signal for curvature sensing. An Optical Time-Domain Reflectometer (OTDR) was used to send impulses down into the fiber loop cavity, inside of which a long period grating (LPG) was placed to act as sensing device. The added-signal was obtained by the sum of several conventional CRD impulses, thus providing an improvement on the curvature sensitivity when compared to the conventional CRD signal processing. Sensitivity to applied curvature of 15.3 mu s/m(-1) was obtained. This result was found to be 20-fold the one obtained for the conventional CRD signal processing.

2015

FIBER OPTIC DISPLACEMENT SENSOR BASED ON A DOUBLE-REFLECTING OTDR TECHNIQUE

Authors
Rocco Giraldi, MTMR; Fernandes, CS; Ferreira, MS; de Sousa, MJ; Jorge, P; Costa, JCWA; Santos, JL; Frazao, O;

Publication
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS

Abstract
In this work, it is proposed a technique to implement an intensity sensor based on the generation of a double-reflecting (ghost) signal in optical time domain reflectometry (OTDR). The intensity sensor is supported by a singlemode-multimode-singlemode (SMS) fiber structure combined with a fiber loop mirror (FLM). The results of the displacement sensitivity show linear behavior for both the first-reflecting and double-reflecting signals with linear slopes of approximately -4.5 dB/mm and -6 dB/mm, respectively. The displacement resolution achieved is approximate to 0.28 mm. It is also found that the system is able to read periodic displacement variations in the millisecond time scale applied to the sensing head. (c) 2015 Wiley Periodicals, Inc. Microwave Opt Technol Lett 57:1312-1315, 2015

2015

Fiber-Optic Cavity Ring Down Using an Added-Signal for Curvature Sensing

Authors
Silva, S; Biswas, P; Bandyopadhyay, S; Jorge, PA; Marques, MB; Frazao, O;

Publication
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
This letter presents a fiber-optic cavity ring down (CRD) configuration using an added-signal for curvature sensing. An optical time-domain reflectometer was used to send impulses down into the fiber loop cavity, inside of which a long period grating was placed to act as a sensing device. The added-signal was obtained by the sum of several conventional CRD impulses, thus providing an improvement on the curvature sensitivity when compared with the conventional CRD signal processing. A linear response to applied curvature in the range of 2.2-3.6 m(-1) was observed, and a sensitivity of 15.3 mu s/m(-1) was obtained. This result was found to be 20-fold the one obtained for the conventional CRD signal processing. The added-signal increases the optical power but increases as well the ring-down time due to the sum of the several loops that light travels inside the ring. A ring-down time response of 43.3 mu s was attained (versus 23.7 mu s for the conventional CRD signal processing).

  • 1
  • 46