Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Luís Guimarães

2016

Using Analytics to Enhance a Food Retailer's Shelf-Space Management

Authors
Bianchi Aguiar, T; Silva, E; Guimaraes, L; Carravilla, MA; Oliveira, JF; Amaral, JG; Liz, J; Lapela, S;

Publication
INTERFACES

Abstract
This paper describes the results of our collaboration with the leading Portuguese food retailer to address the shelf-space planning problem of allocating products to shop-floor shelves. Our challenge was to introduce analytical methods into the shelf-space planning process to improve the return on space and automate a process heavily dependent on the experience of the retailer's space managers. This led to the creation of GAP, a decision support system that the company's space-management team uses daily. We developed a modular operations research approach that systematically applies mathematical programming models and heuristics to determine the best layout of products on the shelves. GAP combines its analytical strength with an ability to incorporate different types of merchandising rules to balance the tradeoff between optimization and customization.

2017

Tactical production and distribution planning with dependency issues on the production process

Authors
Wei, WC; Guimaraes, L; Amorim, P; Almada Lobo, B;

Publication
OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE

Abstract
Tactical production-distribution "planning models have attracted a great deal of attention in the past decades. In these models, production and distribution decisions are considered simultaneously such that the combined plans are more advantageous than the plans resolved in a hierarchical planning process. We consider a two-stage production process, where in the first stage raw materials are transformed into continuous resources that feed the discrete production of end products in the second stage. Moreover, the setup times and costs of resources depend on the sequence in which they are processed in the first stage. The minimum scheduling unit is the product family which consists of products sharing common resources and manufacturing processes. Based on different mathematical modelling approaches to the production in the first stage, we develop a sequence-oriented formulation and a product-oriented formulation, and propose decomposition-based heuristics to solve this problem efficiently. By considering these dependencies arising in practical production processes, our model can be applied to various industrial cases, such as the beverage industry or the steel industry. Computation tests on instances from an industrial application are provided at the end of the paper.

2018

Allocating products on shelves under merchandising rules: Multi-level product families with display directions

Authors
Bianchi Aguiar, T; Silva, E; Guimardes, L; Carravilla, MA; Oliveira, JF;

Publication
OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE

Abstract
Retailers' individual products are categorized as part of product families. Merchandising rules specify how the products should be arranged on the shelves using product families, creating more structured displays capable of increasing the viewers' attention. This paper presents a novel mixed integer programming formulation for the Shelf Space Allocation Problem considering two innovative features emerging from merchandising rules: hierarchical product families and display directions. The formulation uses single commodity flow constraints to model product sequencing and explores the product families' hierarchy to reduce the combinatorial nature of the problem. Based on the formulation, a mathematical programming-based heuristic was also developed that uses product families to decompose the problem into a sequence of sub-problems. To improve performance, its original design was adapted following two directions: recovery from infeasible solutions and reduction of solution times. A new set of real case benchmark instances is also provided, which was used to assess the formulation and the matheuristic. This approach will allow retailers to efficiently create planograms capable of following merchandising rules and optimizing shelf space revenue.

2013

Pricing, relaxing and fixing under lot sizing and scheduling

Authors
Guimaraes, L; Klabjan, D; Almada Lobo, B;

Publication
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

Abstract
We present a novel mathematical model and a mathematical programming based approach to deliver superior quality solutions for the single machine capacitated lot sizing and scheduling problem with sequence-dependent setup times and costs. The formulation explores the idea of scheduling products based on the selection of known production sequences. The model is the basis of a matheuristic, which embeds pricing principles within construction and improvement MIP-based heuristics. A partial exploration of distinct neighborhood structures avoids local entrapment and is conducted on a rule-based neighbor selection principle. We compare the performance of this approach to other heuristics proposed in the literature. The computational study carried out on different sets of benchmark instances shows the ability of the matheuristic to cope with several model extensions while maintaining a very effective search. Although the techniques described were developed in the context of the problem studied, the method is applicable to other lot sizing problems or even to problems outside this domain.

2014

Sistema de apoio à decisão do orçamento anual de produção na indústria de bebidas

Authors
Guimarães, L; Almada-Lobo, B;

Publication
Investigação operacional em ação: casos de aplicação

Abstract

2017

Alternative Mathematical Models and Solution Approaches for Lot-Sizing and Scheduling Problems in the Brewery Industry: Analyzing Two Different Situations

Authors
Baldo, TA; Morabito, R; Santos, MO; Guimaraes, L;

Publication
MATHEMATICAL PROBLEMS IN ENGINEERING

Abstract
This research proposes new approaches to deal with the production planning and scheduling problem in brewery facilities. Two real situations found in factories are addressed, which differ by considering (or not) the setup operations in tanks that provide liquid for bottling lines. Depending on the technology involved in the production process, the number of tank swaps is relevant (Case A) or it can be neglected (Case B). For both scenarios, new MIP (Mixed Integer Programming) formulations and heuristic solution methods based on these formulations are proposed. In order to evaluate the approach for Case A, we compare the results of a previous study with the results obtained in this paper. For the solution methods and the result analysis of Case B, we propose adaptations of Case A approaches yielding an alternative MIP formulation to represent it. Therefore, the main contributions of this article are twofold: (i) to propose alternative MIP models and solution methods for the problem in Case A, providing better results than previously reported, and (ii) to propose new MIP models and solution methods for Case B, analyzing and comparing the results and benefits for Case B considering the technology investment required.

  • 2
  • 5