2024
Authors
Aslani, R; Dias, D; Coca, A; Cunha, JPS;
Publication
Abstract
2024
Authors
Barros, BJ; Cunha, JPS;
Publication
FRONTIERS IN NEUROSCIENCE
Abstract
The human brain, with its vast network of billions of neurons and trillions of synapses (connections) between diverse cell types, remains one of the greatest mysteries in science and medicine. Despite extensive research, an understanding of the underlying mechanisms that drive normal behaviors and response to disease states is still limited. Advancement in the Neuroscience field and development of therapeutics for related pathologies requires innovative technologies that can provide a dynamic and systematic understanding of the interactions between neurons and neural circuits. In this work, we provide an up-to-date overview of the evolution of neurophotonic approaches in the last 10 years through a multi-source, literature analysis. From an initial corpus of 243 papers retrieved from Scopus, PubMed and WoS databases, we have followed the PRISMA approach to select 56 papers in the area. Following a full-text evaluation of these 56 scientific articles, six main areas of applied research were identified and discussed: (1) Advanced optogenetics, (2) Multimodal neural interfaces, (3) Innovative therapeutics, (4) Imaging devices and probes, (5) Remote operations, and (6) Microfluidic platforms. For each area, the main technologies selected are discussed according to the photonic principles applied, the neuroscience application evaluated and the more indicative results of efficiency and scientific potential. This detailed analysis is followed by an outlook of the main challenges tackled over the last 10 years in the Neurophotonics field, as well as the main technological advances regarding specificity, light delivery, multimodality, imaging, materials and system designs. We conclude with a discussion of considerable challenges for future innovation and translation in Neurophotonics, from light delivery within the brain to physical constraints and data management strategies.
2025
Authors
Dias, AM; Cunha, JP; Mehrkens, J; Kaufmann, E;
Publication
Neuromodulation: Technology at the Neural Interface
Abstract
2022
Authors
Faria, MT; Vilas-Boas, MdC; Maia, P; Barata, P; Oliveira, A; Rego, R; Sousa, J; Pereira, J; Rocha-Gonçalves, F; Cunha, JPS; Martins, E;
Publication
Journal of Clinical Images and Medical Case Reports
Abstract
2023
Authors
Karacsony, T; Jeni, LA; De La Torre Frade, F; Cunha, JPS;
Publication
Abstract
2025
Authors
Karácsony, T; Fearns, N; Birk, D; Trapp, SD; Ernst, K; Vollmar, C; Rémi, J; Jeni, LA; De la Torre, F; Cunha, JPS;
Publication
EXPERT SYSTEMS WITH APPLICATIONS
Abstract
Epileptic seizure classification based on seizure semiology requires automated, quantitative approaches to support the diagnosis of epilepsy, which affects 1 % of the world's population. Current approaches address the problem on a seizure level, neglecting the detailed evaluation of the classification of the underlying action features, also known as Movements of Interest (MOIs), which are critical for epileptologists in determining their classifications. Moreover, it hinders objective comparison of these approaches and attribution of performance differences due to datasets, intra-dataset MOI distribution, or architecture variations. Objective evaluation of action recognition techniques is crucial, with MOIs serving as foundational elements of semiology for clinical in-bed applications to facilitate epileptic seizure classification. However, until now, there were no MOI datasets available nor benchmarks comparing different action recognition approaches for this clinical problem. Therefore, as a pilot, we introduced a novel, simulated seizure semiology dataset carried out by 8 experienced epileptologists in an EMU bed, consisting of 7 MOI classes. We compare several computer vision methods for MOI classification, two image-based (I3D and Uniformerv2), and two skeleton-based (ST-GCN++ and PoseC3D) action recognition approaches. This study emphasizes the advantages of a 2-stage skeleton-based action recognition approach in a transfer learning setting (4 classes) and the multi-scale challenge of MOI classification (7 classes), advocating for the integration of skeleton-based methods with hand gesture recognition technologies in the future. The study's controlled MOI simulation dataset provides us with the opportunity to advance the development of automated epileptic seizure classification systems, paving the way for enhancing their performance and having the potential to contribute to improved patient care.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.