2021
Authors
Morais, R; Mendes, J; Silva, R; Silva, N; Sousa, JJ; Peres, E;
Publication
AGRICULTURE-BASEL
Abstract
Spatial and temporal variability characterization in Precision Agriculture (PA) practices is often accomplished by proximity data gathering devices, which acquire data from a wide variety of sensors installed within the vicinity of crops. Proximity data acquisition usually depends on a hardware solution to which some sensors can be coupled, managed by a software that may (or may not) store, process and send acquired data to a back-end using some communication protocol. The sheer number of both proprietary and open hardware solutions, together with the diversity and characteristics of available sensors, is enough to deem the task of designing a data acquisition device complex. Factoring in the harsh operational context, the multiple DIY solutions presented by an active online community, available in-field power approaches and the different communication protocols, each proximity monitoring solution can be regarded as singular. Data acquisition devices should be increasingly flexible, not only by supporting a large number of heterogeneous sensors, but also by being able to resort to different communication protocols, depending on both the operational and functional contexts in which they are deployed. Furthermore, these small and unattended devices need to be sufficiently robust and cost-effective to allow greater in-field measurement granularity 365 days/year. This paper presents a low-cost, flexible and robust data acquisition device that can be deployed in different operational contexts, as it also supports three different communication technologies: IEEE 802.15.4/ZigBee, LoRa/LoRaWAN and GRPS. Software and hardware features, suitable for using heat pulse methods to measure sap flow, leaf wetness sensors and others are embedded. Its power consumption is of only 83 mu A during sleep mode and the cost of the basic unit was kept below the EUR 100 limit. In-field continuous evaluation over the past three years prove that the proposed solution-SPWAS'21-is not only reliable but also represents a robust and low-cost data acquisition device capable of gathering different parameters of interest in PA practices.
2021
Authors
Carneiro, G; Pádua, L; Sousa, JJ; Peres, E; Morais, R; Cunha, A;
Publication
2021 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM IGARSS
Abstract
In this paper we present a Deep Learning-based methodology to automatically classify 12 of the most representative grapevarieties existing in the Douro Demarked region, Portugal. The dataset used consisted of images of leaves at different stages of development, collected on their natural environment. The development of such methodologies becomes particularly important, in a scenario in which ampeleographers are disappearing, creating a gap in the task of inspection of grape varieties. Our approach was based on the transfer learning of the Xcepetion model, using Focal Loss, adaptive learning rate decay and SGD. The model obtained a F1 score of 0.93. To clearly understand the predictions of the model, and realize which regions of the image contributed the most to the classification, the LIME library was used. This way it was possible to identify the parts of the images that were considered for and against each prediction.
2022
Authors
Tinoco, V; Silva, MF; Santos, FN; Morais, R; Filipe, V;
Publication
IEEE ACCESS
Abstract
Robotic manipulators rely on feedback obtained from rotary encoders for control purposes. This article introduces a vision-based feedback system that can be used in an agricultural context, where the shapes and sizes of fruits are uncertain. We aim to mimic a human, using vision and touch as manipulator control feedback. This work explores the use of a fish-eye lens camera to track a SCARA manipulator with coloured markers on its joints for the position estimation with the goal to reduce costs and increase reliability. The Kalman Filter and the Particle Filter are compared and evaluated in terms of accuracy and tracking abilities of the marker's positions. The estimated image coordinates of the markers are converted to world coordinates using planar homography, as the SCARA manipulator has co-planar joints and the coloured markers share the same plane. Three laboratory experiments were conducted to evaluate the system's performance in joint angle estimation of a manipulator. The obtained results are promising, for future cost effective agricultural robotic arms developments. Besides, this work presents solutions and future directions to increase the joint position estimation accuracy.
2022
Authors
Padua, L; Matese, A; Di Gennaro, SF; Morais, R; Peres, E; Sousa, JJ;
Publication
COMPUTERS AND ELECTRONICS IN AGRICULTURE
Abstract
Vineyard classification is an important process within viticulture-related decision-support systems. Indeed, it improves grapevine vegetation detection, enabling both the assessment of vineyard vegetative properties and the optimization of in-field management tasks. Aerial data acquired by sensors coupled to unmanned aerial vehicles (UAVs) may be used to achieve it. Flight campaigns were conducted to acquire both RGB and multispectral data from three vineyards located in Portugal and in Italy. Red, green, blue and near infrared orthorectified mosaics resulted from the photogrammetric processing of the acquired data. They were then used to calculate RGB and multispectral vegetation indices, as well as a crop surface model (CSM). Three different supervised machine learning (ML) approaches-support vector machine (SVM), random forest (RF) and artificial neural network (ANN)-were trained to classify elements present within each vineyard into one of four classes: grapevine, shadow, soil and other vegetation. The trained models were then used to classify vineyards objects, generated from an object-based image analysis (OBIA) approach, into the four classes. Classification outcomes were compared with an automatic point-cloud classification approach and threshold-based approaches. Results shown that ANN provided a better overall classification performance, regardless of the type of features used. Features based on RGB data showed better performance than the ones based only on multispectral data. However, a higher performance was achieved when using features from both sensors. The methods presented in this study that resort to data acquired from different sensors are suitable to be used in the vineyard classification process. Furthermore, they also may be applied in other land use classification scenarios.
2022
Authors
Mendes, J; Peres, E; dos Santos, FN; Silva, N; Silva, R; Sousa, JJ; Cortez, I; Morais, R;
Publication
AGRICULTURE-BASEL
Abstract
Proximity sensing approaches with a wide array of sensors available for use in precision viticulture contexts can nowadays be considered both well-know and mature technologies. Still, several in-field practices performed throughout different crops rely on direct visual observation supported on gained experience to assess aspects of plants' phenological development, as well as indicators relating to the onset of common plagues and diseases. Aiming to mimic in-field direct observation, this paper presents VineInspector: a low-cost, self-contained and easy-to-install system, which is able to measure microclimatic parameters, and also to acquire images using multiple cameras. It is built upon a stake structure, rendering it suitable for deployment across a vineyard. The approach through which distinguishable attributes are detected, classified and tallied in the periodically acquired images, makes use of artificial intelligence approaches. Furthermore, it is made available through an IoT cloud-based support system. VineInspector was field-tested under real operating conditions to assess not only the robustness and the operating functionality of the hardware solution, but also the AI approaches' accuracy. Two applications were developed to evaluate Vinelnspector's consistency while a viticulturist' assistant in everyday practices. One was intended to determine the size of the very first grapevines' shoots, one of the required parameters of the well known 3-10 rule to predict primary downy mildew infection. The other was developed to tally grapevine moth males captured in sex traps. Results show that VineInspector is a logical step in smart proximity monitoring by mimicking direct visual observation from experienced viticulturists. While the latter traditionally are responsible for a set of everyday practices in the field, these are time and resource consuming. VineInspector was proven to be effective in two of these practices, performing them automatically. Therefore, it enables both the continuous monitoring and assessment of a vineyard's phenological development in a more efficient manner, making way to more assertive and timely practices against pests and diseases.
2022
Authors
Sousa, JJ; Toscano, P; Matese, A; Di Gennaro, SF; Berton, A; Gatti, M; Poni, S; Padua, L; Hruska, J; Morais, R; Peres, E;
Publication
SENSORS
Abstract
Hyperspectral aerial imagery is becoming increasingly available due to both technology evolution and a somewhat affordable price tag. However, selecting a proper UAV + hyperspectral sensor combo to use in specific contexts is still challenging and lacks proper documental support. While selecting an UAV is more straightforward as it mostly relates with sensor compatibility, autonomy, reliability and cost, a hyperspectral sensor has much more to be considered. This note provides an assessment of two hyperspectral sensors (push-broom and snapshot) regarding practicality and suitability, within a precision viticulture context. The aim is to provide researchers, agronomists, winegrowers and UAV pilots with dependable data collection protocols and methods, enabling them to achieve faster processing techniques and helping to integrate multiple data sources. Furthermore, both the benefits and drawbacks of using each technology within a precision viticulture context are also highlighted. Hyperspectral sensors, UAVs, flight operations, and the processing methodology for each imaging type' datasets are presented through a qualitative and quantitative analysis. For this purpose, four vineyards in two countries were selected as case studies. This supports the extrapolation of both advantages and issues related with the two types of hyperspectral sensors used, in different contexts. Sensors' performance was compared through the evaluation of field operations complexity, processing time and qualitative accuracy of the results, namely the quality of the generated hyperspectral mosaics. The results shown an overall excellent geometrical quality, with no distortions or overlapping faults for both technologies, using the proposed mosaicking process and reconstruction. By resorting to the multi-site assessment, the qualitative and quantitative exchange of information throughout the UAV hyperspectral community is facilitated. In addition, all the major benefits and drawbacks of each hyperspectral sensor regarding its operation and data features are identified. Lastly, the operational complexity in the context of precision agriculture is also presented.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.