Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Luís Paulo Reis

2023

Hand Gestures Recognition for an Intelligent Wheelchair Steering Command

Authors
Almeida, P; Faria, BM; Reis, LP;

Publication
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 2

Abstract
The independence and autonomy of both elderly and disabled people have been a growing concern of today's society. Consequently, the increase in life expectancy combined with the ageing of the population has created the ideal conditions for the introduction of Intelligent Wheelchairs (IWs). For this purpose, several adapted sensors should be used to optimize the control of a wheelchair. During this work, the Leap Motion sensor was analyzed to convert the user's will into one of four fundamental driving commands, move forward, turn right, left, or stop. Leap Motion aims to determine the direction to follow according to the hand gesture identified. For this task, data was collected from volunteers while they were performing certain gestures. Thereby it was possible to produce a data set that after being processed and extracted some features enabled the classification of the data with an F1-Score higher than 0.97. Additionally, when tested in a real-time application, this sensor reinforced its high performance.

2022

Forecasting Omicron Variant of Covid-19 with ANN Model in European Countries - Number of Cases, Deaths, and ICU Patients

Authors
de Carvalho, KCM; Reis, LP; Teixeira, JP;

Publication
Optimization, Learning Algorithms and Applications - Second International Conference, OL2A 2022, Póvoa de Varzim, Portugal, October 24-25, 2022, Proceedings

Abstract

2023

Learning hybrid locomotion skills-Learn to exploit residual actions and modulate model-based gait control

Authors
Kasaei, M; Abreu, M; Lau, N; Pereira, A; Reis, LP; Li, ZB;

Publication
FRONTIERS IN ROBOTICS AND AI

Abstract
This work has developed a hybrid framework that combines machine learning and control approaches for legged robots to achieve new capabilities of balancing against external perturbations. The framework embeds a kernel which is a model-based, full parametric closed-loop and analytical controller as the gait pattern generator. On top of that, a neural network with symmetric partial data augmentation learns to automatically adjust the parameters for the gait kernel, and also generate compensatory actions for all joints, thus significantly augmenting the stability under unexpected perturbations. Seven Neural Network policies with different configurations were optimized to validate the effectiveness and the combined use of the modulation of the kernel parameters and the compensation for the arms and legs using residual actions. The results validated that modulating kernel parameters alongside the residual actions have improved the stability significantly. Furthermore, The performance of the proposed framework was evaluated across a set of challenging simulated scenarios, and demonstrated considerable improvements compared to the baseline in recovering from large external forces (up to 118%). Besides, regarding measurement noise and model inaccuracies, the robustness of the proposed framework has been assessed through simulations, which demonstrated the robustness in the presence of these uncertainties. Furthermore, the trained policies were validated across a set of unseen scenarios and showed the generalization to dynamic walking.

2021

Computer Supported Qualitative Research

Authors
Costa, AP; Reis, LP; Moreira, A; Longo, L; Bryda, G;

Publication
Advances in Intelligent Systems and Computing

Abstract

2023

Investigating the reviewer assignment problem: A systematic literature review

Authors
Ribeiro, AC; Sizo, A; Reis, LP;

Publication
JOURNAL OF INFORMATION SCIENCE

Abstract
The assignment of appropriate reviewers to academic articles, known as the reviewer assignment problem (RAP), has become a crucial issue in academia. While there has been much research on RAP, there has not yet been a systematic literature review (SLR) examining the various approaches, techniques, algorithms and discoveries related to this topic. To conduct the SLR, we identified and evaluated relevant articles from four databases using defined inclusion and exclusion criteria. We analysed the selected articles and extracted information, and assessed their quality. Our review identified 67 articles on RAP published in conferences and journals up to mid-2022. As one of the main challenges in RAP is acquiring open data, we have studied the data sources used by researchers and found that most studies use real data from conferences, bibliographic databases and online academic search engines. RAP is divided into two main phases: (1) finding/recommending expert reviewers and (2) assigning reviewers to submitted manuscripts. In Phase 1, we have identified that decision support systems, recommendation systems, and machine learning-oriented approaches are more commonly used due to better results. In Phase 2, heuristics and metaheuristics are the approaches that present better results and are consequently more commonly used by researchers. Based on the analysed studies, we have identified potential areas for future research that could lead to improved results. Specifically, we suggest exploring the application of deep neural networks for calculating the degree of correspondence and using the Boolean satisfiability problem to optimise the attribution process.

2023

FC Portugal: RoboCup 2022 3D Simulation League and Technical Challenge Champions

Authors
Abreu, M; Kasaei, M; Reis, LP; Lau, N;

Publication
ROBOCUP 2022

Abstract
FC Portugal, a team from the universities of Porto and Aveiro, won the main competition of the 2022 RoboCup 3D Simulation League, with 17 wins, 1 tie and no losses. During the course of the competition, the team scored 84 goals while conceding only 2. FC Portugal also won the 2022 RoboCup 3D Simulation League Technical Challenge, accumulating the maximum amount of points by ending first in its both events: the Free/Scientific Challenge, and the Fat Proxy Challenge. The team presented in this year's competition was rebuilt from the ground up since the last RoboCup. No previous code was used or adapted, with the exception of the 6D pose estimation algorithm, and the get-up behaviors, which were re-optimized. This paper describes the team's new architecture and development approach. Key strategy elements include team coordination, role management, formation, communication, skill management and path planning. New lower-level skills were based on a deterministic analytic model and a shallow neural network that learned residual dynamics through reinforcement learning. This process, together with an overlapped learning approach, improved seamless transitions, learning time, and the behavior in terms of efficiency and stability. In comparison with the previous team, the omnidirectional walk is more stable and went from 0.70m/s to 0.90 m/s, the long kick from 15m to 19m, and the new close-control dribble reaches up to 1.41 m/s.

  • 46
  • 86