2025
Authors
Brito C.; Pina N.; Esteves T.; Vitorino R.; Cunha I.; Paulo J.;
Publication
Transportation Engineering
Abstract
Cities worldwide have agreed on ambitious goals regarding carbon neutrality. To do so, policymakers seek ways to foster smarter and cleaner transportation solutions. However, citizens lack awareness of their carbon footprint and of greener mobility alternatives such as public transports. With this, three main challenges emerge: (i) increase users’ awareness regarding their carbon footprint, (ii) provide personalized recommendations and incentives for using sustainable transportation alternatives and, (iii) guarantee that any personal data collected from the user is kept private. This paper addresses these challenges by proposing a new methodology. Created under the FranchetAI project, the methodology combines federated Artificial Intelligence (AI) and Greenhouse Gas (GHG) estimation models to calculate the carbon footprint of users when choosing different transportation modes (e.g., foot, car, bus). Through a mobile application that keeps the privacy of users’ personal information, the project aims at providing detailed reports to inform citizens about their impact on the environment, and an incentive program to promote the usage of more sustainable mobility alternatives.
2024
Authors
Miranda, M; Tanimura, Y; Haga, J; Ruhela, A; Harrell, SL; Cazes, J; Macedo, R; Pereira, J; Paulo, J;
Publication
SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis, Atlanta, GA, USA, November 17-22, 2024
Abstract
Modern supercomputers host numerous jobs that compete for shared storage resources, causing I/O interference and performance degradation. Solutions based on software- defined storage (SDS) emerged to address this issue by coordinating the storage environment through the enforcement of QoS policies. However, these often fail to consider the scale of modern HPC infrastructures.In this work, we explore the advantages and shortcomings of state-of-the-art SDS solutions and highlight the scale of current production clusters and their rising trends. Furthermore, we conduct the first experimental study that sheds new insights into the performance and scalability of flat and hierarchical SDS control plane designs.Our results, using the Frontera supercomputer, show that a flat design with a single controller can scale up to 2,500 nodes with an average control cycle latency of 41 ms, while hierarchical designs can handle up to 10,000 nodes with an average latency ranging between 69 and 103 ms. © 2024 IEEE.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.