Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Telmo Oliveira Adão

2017

Very high resolution aerial data to support multi-temporal precision agriculture information management

Authors
Padua, L; Adao, T; Hruska, J; Sousa, JJ; Peres, E; Morais, R; Sousa, A;

Publication
CENTERIS 2017 - INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS / PROJMAN 2017 - INTERNATIONAL CONFERENCE ON PROJECT MANAGEMENT / HCIST 2017 - INTERNATIONAL CONFERENCE ON HEALTH AND SOCIAL CARE INFORMATION SYSTEMS AND TECHNOLOGIES, CENTERI

Abstract
The usage of small-sized unmanned aerial systems (UAS) has increased in the last years, in many different areas, being agriculture and forestry those who benefit the most from this relatively new remote sensing platform. Leaf area index, canopy and plant volume are among the parameters that can be determined using the very high resolution aerial data obtained by sensors coupled in unmanned aerial vehicles (UAV). This remote sensing technology affords the possibility of monitoring the vegetative development, identifying different types of issues, enabling the application of the most appropriated treatments in the affected areas. In this paper, a methodology allowing to perform multi-temporal UAS-based data analysis obtained by different sensors is proposed. A case study in vineyards and chestnuts is used to prove the benefits of continuous crop monitoring in its management and productivity of agroforestry parcels/activities. (C) 2017 The Authors. Published by Elsevier B.V.

2018

Multi-Temporal Analysis of Forestry and Coastal Environments Using UASs

Authors
Padua, L; Hruska, J; Bessa, J; Adao, T; Martins, LM; Goncalves, JA; Peres, E; Sousa, AMR; Castro, JP; Sousa, JJ;

Publication
REMOTE SENSING

Abstract
Due to strong improvements and developments achieved in the last decade, it is clear that applied research using remote sensing technology such as unmanned aerial vehicles (UAVs) can provide a flexible, efficient, non-destructive, and non-invasive means of acquiring geoscientific data, especially aerial imagery. Simultaneously, there has been an exponential increase in the development of sensors and instruments that can be installed in UAV platforms. By combining the aforementioned factors, unmanned aerial system (UAS) setups composed of UAVs, sensors, and ground control stations, have been increasingly used for remote sensing applications, with growing potential and abilities. This paper's overall goal is to identify advantages and challenges related to the use of UAVs for aerial imagery acquisition in forestry and coastal environments for preservation/prevention contexts. Moreover, the importance of monitoring these environments over time will be demonstrated. To achieve these goals, two case studies using UASs were conducted. The first focuses on phytosanitary problem detection and monitoring of chestnut tree health (Padrela region, Valpacos, Portugal). The acquired high-resolution imagery allowed for the identification of tree canopy cover decline by means of multi-temporal analysis. The second case study enabled the rigorous and non-evasive registry process of topographic changes that occurred in the sandspit of Cabedelo (Douro estuary, Porto, Portugal) in different time periods. The obtained results allow us to conclude that the UAS constitutes a low-cost, rigorous, and fairly autonomous form of remote sensing technology, capable of covering large geographical areas and acquiring high precision data to aid decision support systems in forestry preservation and coastal monitoring applications. Its swift evolution makes it a potential big player in remote sensing technologies today and in the near future.

2014

Proposal of an Information System for an Adaptive Mixed Reality System for Archaeological Sites

Authors
Magalhaes, LG; Sousa, JJ; Bento, R; Adao, T; Pereira, F; Filipe, V; Peres, E;

Publication
CENTERIS 2014 - CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS / PROJMAN 2014 - INTERNATIONAL CONFERENCE ON PROJECT MANAGEMENT / HCIST 2014 - INTERNATIONAL CONFERENCE ON HEALTH AND SOCIAL CARE INFORMATION SYSTEMS AND TECHNOLOGIES

Abstract
The use of Augmented Reality (AR) techniques to visualize virtual archaeological sites is neither a new or recent issue. In those approaches the virtual models are only visualized using the existent in situ illumination, which does not allow a visitor to have a similar visual experience to that which he would have at the time the structures were built. In Augmented Virtuality (AV) approaches the virtual world prevails, which is augmented with information from the real world, which allows a better control over the parameters of the Mixed Reality (MR) environment created. In some cases, there is the need to use both approaches (AR or AV), depending on some context conditions. This paper proposes an architecture and an information system for an adaptive MR system which main goal is to visualize in situ virtual reconstructions of archaeological sites that are seamlessly merged with the real scene. In this context, a new adaptive methodology will be defined to manage the level of mixing between the real and the virtual scene, identifying in each instant the most proper approach to use (AR or AV), as well as defining the way how transitions between approaches are made. (C) 2014 The Authors. Published by Elsevier Ltd.

2016

A myographic-based HCI solution proposal for upper limb amputees

Authors
Matos, A; Adao, T; Magalhaes, L; Peres, E;

Publication
INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS/INTERNATIONAL CONFERENCE ON PROJECT MANAGEMENT/INTERNATIONAL CONFERENCE ON HEALTH AND SOCIAL CARE INFORMATION SYSTEMS AND TECHNOLOGIES, CENTERIS/PROJMAN / HCIST 2016

Abstract
Interaction plays a fundamental role as it sets bridges between humans and computers. However, people with disability are prevented to use computers by the ordinary means, due to physical or intellectual impairments. Thus, the human-computer interaction (HCI) research area has been developing solutions to improve the technological accessibility of impaired people, by enhancing computers and similar devices with the necessary means to attend to the different disabilities, thereby contributing to reduce digital exclusion. Within the aforementioned scope, this paper presents an interaction solution for upper limb amputees, supported on a myographic gesture-control device named Myo. This device is an emergent wearable technology, which consists in a muscle-sensitive bracelet. It transmits myographic and inertial data, susceptible of being converted into actions for interaction purposes (e.g. clicking or moving a mouse cursor). Although being a gesture control armband, Myo can also be used in the legs, as was ascertained through some preliminary tests with users. Both data types (myographic and inertial) remain to be transmitted and are available to be converted into gestures. A general architecture, a use case diagram and the two main functional modules specification are presented. These will guide the future implementation of the proposed Myo-based HCI solution, which is intended to be a solid contribution for the interaction between upper limb amputees and computers. (C) 2016 The Authors. Published by Elsevier B.V.

2017

UAS, sensors, and data processing in agroforestry: a review towards practical applications

Authors
Pádua, L; Vanko, J; Hruska, J; Adao, T; Sousa, JJ; Peres, E; Morais, R;

Publication
INTERNATIONAL JOURNAL OF REMOTE SENSING

Abstract
The aim of this study is twofold: first, to present a survey of the actual and most advanced methods related to the use of unmanned aerial systems (UASs) that emerged in the past few years due to the technological advancements that allowed the miniaturization of components, leading to the availability of small-sized unmanned aerial vehicles (UAVs) equipped with Global Navigation Satellite Systems (GNSS) and high quality and cost-effective sensors; second, to advice the target audience - mostly farmers and foresters - how to choose the appropriate UAV and imaging sensor, as well as suitable approaches to get the expected and needed results of using technological tools to extract valuable information about agroforestry systems and its dynamics, according to their parcels' size and crop's types. Following this goal, this work goes beyond a survey regarding UAS and their applications, already made by several authors. It also provides recommendations on how to choose both the best sensor and UAV, in according with the required application. Moreover, it presents what can be done with the acquired sensors' data through theuse of methods, procedures, algorithms and arithmetic operations. Finally, some recent applications in the agroforestry research area are presented, regarding the main goal of each analysed studies, the used UAV, sensors, and the data processing stage to reach conclusions.

2014

HelpmePills: a mobile pill recognition tool for elderly persons

Authors
Cunha, A; Adao, T; Trigueiros, P;

Publication
CENTERIS 2014 - CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS / PROJMAN 2014 - INTERNATIONAL CONFERENCE ON PROJECT MANAGEMENT / HCIST 2014 - INTERNATIONAL CONFERENCE ON HEALTH AND SOCIAL CARE INFORMATION SYSTEMS AND TECHNOLOGIES

Abstract
Aging is a natural process typically characterized by loss of capabilities such as vision or memory. These transformations interfere with quotidian tasks performance sometimes leading to dangerous situations for senior adults. One of the most relevant is related with the wrong ingestion of medication or even forgetfulness. This kind of mistakes represents a real threat to elder's health and life. Furthermore, the existing technological solutions concerned with this problematic, are designed for professionals or general public disregarding elderly needs in particular. Thus, in order to overcome this lack of support, it will be presented an image processing tool, which represents the first steps for a larger toolset adapted for elderly persons, under construction. The procedures followed by this proposal include image acquisition and pill characterization based on its shape, dimensions and colors. The system uses these features in the learning step to describe and store pills information on local database. Later, in the recognition step, the same features are determined and compared against database in order to provide the user with relevant informations related with the pill under recognition. (C) 2014 The Authors. Published by Elsevier Ltd.

  • 2
  • 9