The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Abstract The deep ocean is vast and challenging to observe; however, it is key to knowledge of the sea and its impact on global climate. Fixed sea observing points (such as the EMSO observing nodes) provide a limited view and are complemented by expensive oceanographic campaigns with systems demanding high logistical requirements such as deep-sea ROVs. These costs not only limit our capability for key ocean data collection in the deep but also introduce their own environmental costs.Emerging challenges in knowledge and pressure on the exploration of the deep ocean demand new technological solutions for monitoring and safeguarding the marine ecosystem.Innovative robotic technologies such as the TURTLE robotic deep-sea landers can combine long-term permanence at the seabed with mobility and dynamic reconfigurability in spatial and temporal deep-sea observation.Robotic systems of a heterogeneous nature (from conventional gliders, AUVs, or robotic landers) can be combined with standard and new sensing systems, such as bottom-deployed sensor nodes, moored systems, and cabled points when feasible.These systems can provide underwater localization services for the different assets, energy supply and high bandwidth data transfer with robotic docking stations for other mobile elements. An example of the synergy obtained with these new systems is the possibility of using robotic landers as carriers of EGIM (EMSO Generic Instrument Module) sensor payloads, providing power and data storage and flexibility in the deployment and recovery process.This approach, partly taken in the EU-funded Trident project to develop technical solutions for cost-effective and efficient observation of environmental impacts on deep seabed environments, allows for a substantial reduction in the operational and logistic requirements for deep-sea observation, greatly reducing the need for costly oceanographic campaigns or the use of expensive (economic and logistical) deep sea ROV systems.In this work, we present some of the new developments and discuss the transition from existing technological solutions to new ones integrating these recent developments.
It is one of the institution’s most important communication tools, featuring news and articles about the science and technology made by INESC TEC, always with an informal, light, fresh and yet authentic and educational tone. It is not politically correct, nor does it intend to be the voice of the Board of Directors.