Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
Publications

Publications by LIAAD

2019

Impact of genealogical features in transthyretin familial amyloid polyneuropathy age of onset prediction

Authors
Pedroto, M; Jorge, A; Mendes Moreira, J; Coelho, T;

Publication
Advances in Intelligent Systems and Computing

Abstract
Transthyretin Familial Amyloid Polyneuropathy (TTR-FAP) is a neurological genetic disease that propagates from one family generation to the next. The disease can have severe effects on the life of patients after the first symptoms (onset) appear. Accurate prediction of the age of onset for these patients can help the management of the impact. This is, however, a challenging problem since both familial and non-familial characteristics may or may not affect the age of onset. In this work, we assess the importance of sets of genealogical features used for Predicting the Age of Onset of TTR-FAP Patients. We study three sets of features engineered from clinical and genealogical data records obtained from Portuguese patients. These feature sets, referred to as Patient, First Level and Extended Level Features, represent sets of characteristics related to each patient’s attributes and their familial relations. They were compiled by a Medical Research Center working with TTR-FAP patients. Our results show the importance of genealogical data when clinical records have no information related with the ancestor of the patient, namely its Gender and Age of Onset. This is suggested by the improvement of the estimated predictive error results after combining First and Extended Level with the Patients Features. © Springer Nature Switzerland AG 2019.

2019

The 2nd International Workshop on Narrative Extraction from Text: Text2Story 2019

Authors
Jorge, AM; Campos, R; Jatowt, A; Bhatia, S;

Publication
Lecture Notes in Computer Science - Advances in Information Retrieval

Abstract

2019

The search of conditional outliers

Authors
Portela, E; Ribeiro, RP; Gama, J;

Publication
Intell. Data Anal.

Abstract

2019

The search of conditional outliers

Authors
Portela, E; Ribeiro, RP; Gama, J;

Publication
Intelligent Data Analysis

Abstract

2019

Data mining based framework to assess solution quality for the rectangular 2D strip-packing problem

Authors
Júnior, AN; Silva, E; Gomes, AM; Soares, C; Oliveira, JF;

Publication
Expert Syst. Appl.

Abstract

2019

Data mining based framework to assess solution quality for the rectangular 2D strip-packing problem

Authors
Neuenfeldt Junior, A; Silva, E; Gomes, M; Soares, C; Oliveira, JF;

Publication
Expert Systems with Applications

Abstract
In this paper, we explore the use of reference values (predictors) for the optimal objective function value of hard combinatorial optimization problems, instead of bounds, obtained by data mining techniques, and that may be used to assess the quality of heuristic solutions for the problem. With this purpose, we resort to the rectangular two-dimensional strip-packing problem (2D-SPP), which can be found in many industrial contexts. Mostly this problem is solved by heuristic methods, which provide good solutions. However, heuristic approaches do not guarantee optimality, and lower bounds are generally used to give information on the solution quality, in particular, the area lower bound. But this bound has a severe accuracy problem. Therefore, we propose a data mining-based framework capable of assessing the quality of heuristic solutions for the 2D-SPP. A regression model was fitted by comparing the strip height solutions obtained with the bottom-left-fill heuristic and 19 predictors provided by problem characteristics. Random forest was selected as the data mining technique with the best level of generalisation for the problem, and 30,000 problem instances were generated to represent different 2D-SPP variations found in real-world applications. Height predictions for new problem instances can be found in the regression model fitted. In the computational experimentation, we demonstrate that the data mining-based framework proposed is consistent, opening the doors for its application to finding predictions for other combinatorial optimisation problems, in particular, other cutting and packing problems. However, how to use a reference value instead of a bound, has still a large room for discussion and innovative ideas. Some directions for the use of reference values as a stopping criterion in search algorithms are also provided. © 2018 Elsevier Ltd

  • 1
  • 176