Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
Publications

Publications by LIAAD

2018

Mr. Silva and patient zero: A medical social network and data visualization information system

Authors
Gonçalves, PCT; Moura, AS; Cordeiro, MNDS; Campos, P;

Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
Detection of Patient Zero is an increasing concern in a world where fast international transports makes pandemia a Public Health issue and a social fear, in cases such as Ebola or H5N1. The development of a medical social network and data visualization information system, which would work as an interface between the patient medical data and geographical and/or social connections, could be an interesting solution, as it would allow to quickly evaluate not only individuals at risk but also the prospective geographical areas for imminent contagion. In this work we propose an ideal model, and contrast it with the status quo of present medical social networks, within the context of medical data visualization. From recent publications, it is clear that our model converges with the identified aspects of prospective medical networks, though data protection is a key concern and implementation would have to seriously consider it. © Springer Nature Switzerland AG 2018.

2018

Multi-label classification from high-speed data streams with adaptive model rules and random rules

Authors
Sousa, R; Gama, J;

Publication
Progress in Artificial Intelligence

Abstract

2018

Co-training study for online regression

Authors
Sousa, R; Gama, J;

Publication
Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC 2018, Pau, France, April 09-13, 2018

Abstract
This paper describes the development of a Co-training (semi-supervised approach) method that uses multiple learners for single target regression on data streams. The experimental evaluation was focused on the comparison between a realistic supervised scenario (all unlabelled examples are discarded) and scenarios where unlabelled examples are used to improve the regression model. Results present fair evidences of error measure reduction by using the proposed Co-training method. However, the error reduction still is relatively small. © 2018 Authors.

2018

Preference rules for label ranking: Mining patterns in multi-target relations

Authors
de Sa, CR; Azevedo, P; Soares, C; Jorge, AM; Knobbe, A;

Publication
INFORMATION FUSION

Abstract
In this paper, we investigate two variants of association rules for preference data, Label Ranking Association Rules and Pairwise Association Rules. Label Ranking Association Rules (LRAR) are the equivalent of Class Association Rules (CAR) for the Label Ranking task. In CAR, the consequent is a single class, to which the example is expected to belong to. In LRAR, the consequent is a ranking of the labels. The generation of LRAR requires special support and confidence measures to assess the similarity of rankings. In this work, we carry out a sensitivity analysis of these similarity-based measures. We want to understand which datasets benefit more from such measures and which parameters have more influence in the accuracy of the model. Furthermore, we propose an alternative type of rules, the Pairwise Association Rules (PAR), which are defined as association rules with a set of pairwise preferences in the consequent. While PAR can be used both as descriptive and predictive models, they are essentially descriptive models. Experimental results show the potential of both approaches.

2018

Using metalearning for parameter tuning in neural networks

Authors
Felix, C; Soares, C; Jorge, A; Ferreira, H;

Publication
Lecture Notes in Computational Vision and Biomechanics

Abstract
Neural networks have been applied as a machine learning tool in many different areas. Recently, they have gained increased attention with what is now called deep learning. Neural networks algorithms have several parameters that need to be tuned in order to maximize performance. The definition of these parameters can be a difficult, extensive and time consuming task, even for expert users. One approach that has been successfully used for algorithm and parameter selection is metalearning. Metalearning consists in using machine learning algorithm on (meta)data from machine learning experiments to map the characteristics of the data with the performance of the algorithms. In this paper we study how a metalearning approach can be used to obtain a good set of parameters to learn a neural network for a given new dataset. Our results indicate that with metalearning we can successfully learn classifiers from past learning tasks that are able to define appropriate parameters. © 2018, Springer International Publishing AG.

2018

A Text Feature Based Automatic Keyword Extraction Method for Single Documents

Authors
Campos, R; Mangaravite, V; Pasquali, A; Jorge, AM; Nunes, C; Jatowt, A;

Publication
Lecture Notes in Computer Science - Advances in Information Retrieval

Abstract

  • 1
  • 158