2023
Authors
Ferreira, PJS; Mendes-Moreira, J; Rodrigues, A;
Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT I
Abstract
Nowadays, all kinds of sensors generate data, and more metrics are being measured. These large quantities of data are stored in large data centers and used to create datasets to train Machine Learning algorithms for most different areas. However, processing that data and training the Machine Learning algorithms require more time, and storing all the data requires more space, creating a Big Data problem. In this paper, we propose simple techniques for reducing large time series datasets into smaller versions without compromising the forecasting capability of the generated model and, simultaneously, reducing the time needed to train the models and the space required to store the reduced sets. We tested the proposed approach in three public and one private dataset containing time series with different characteristics. The results show, for the datasets studied that it is possible to use reduced sets to train the algorithms without affecting the forecasting capability of their models. This approach is more efficient for datasets with higher frequencies and larger seasonalities. With the reduced sets, we obtain decreases in the training time between 40 and 94% and between 46 and 65% for the memory needed to store the reduced sets.
2023
Authors
Homayouni, SM; Fontes, DBMM; Goncalves, JF;
Publication
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH
Abstract
This work addresses the flexible job shop scheduling problem with transportation (FJSPT), which can be seen as an extension of both the flexible job shop scheduling problem (FJSP) and the job shop scheduling problem with transportation (JSPT). Regarding the former case, the FJSPT additionally considers that the jobs need to be transported to the machines on which they are processed on, while in the latter, the specific machine processing each operation also needs to be decided. The FJSPT is NP-hard since it extends NP-hard problems. Good-quality solutions are efficiently found by an operation-based multistart biased random key genetic algorithm (BRKGA) coupled with greedy heuristics to select the machine processing each operation and the vehicles transporting the jobs to operations. The proposed approach outperforms state-of-the-art solution approaches since it finds very good quality solutions in a short time. Such solutions are optimal for most problem instances. In addition, the approach is robust, which is a very important characteristic in practical applications. Finally, due to its modular structure, the multistart BRKGA can be easily adapted to solve other similar scheduling problems, as shown in the computational experiments reported in this paper.
2023
Authors
Homayouni, SM; Fontes, DBMM; Fontes, FACC;
Publication
METAHEURISTICS, MIC 2022
Abstract
Energy-efficient scheduling has become a new trend in industry and academia, mainly due to extreme weather conditions, stricter environmental regulations, and volatile energy prices. This work addresses the energy-efficient Job shop Scheduling Problem with speed adjustable machines. Thus, in addition to determining the sequence of the operations for each machine, one also needs to decide on the processing speed of each operation. We propose a multi-population biased random key genetic algorithm that finds effective solutions to the problem efficiently and outperforms the state-of-the-art solution approaches.
2023
Authors
Fontes, DBMM; Homayouni, SM; Goncalves, JF;
Publication
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
Abstract
This work addresses a variant of the job shop scheduling problem in which jobs need to be transported to the machines processing their operations by a limited number of vehicles. Given that vehicles must deliver the jobs to the machines for processing and that machines need to finish processing the jobs before they can be transported, machine scheduling and vehicle scheduling are intertwined. A coordi-nated approach that solves these interrelated problems simultaneously improves the overall performance of the manufacturing system. In the current competitive business environment, and integrated approach is imperative as it boosts cost savings and on-time deliveries. Hence, the job shop scheduling problem with transport resources (JSPT) requires scheduling production operations and transport tasks simultane-ously. The JSPT is studied considering the minimization of two alternative performance metrics, namely: makespan and exit time. Optimal solutions are found by a mixed integer linear programming (MILP) model. However, since integrated production and transportation scheduling is very complex, the MILP model can only handle small-sized problem instances. To find good quality solutions in reasonable com-putation times, we propose a hybrid particle swarm optimization and simulated annealing algorithm (PSOSA). Furthermore, we derive a fast lower bounding procedure that can be used to evaluate the perfor-mance of the heuristic solutions for larger instances. Extensive computational experiments are conducted on 73 benchmark instances, for each of the two performance metrics, to assess the efficacy and efficiency of the proposed PSOSA algorithm. These experiments show that the PSOSA outperforms state-of-the-art solution approaches and is very robust.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
2023
Authors
Fontes, DBMM; Homayouni, SM;
Publication
FLEXIBLE SERVICES AND MANUFACTURING JOURNAL
Abstract
This work formulates a mixed-integer linear programming (MILP) model and proposes a bi-objective multi-population biased random key genetic algorithm (mp-BRKGA) for the joint scheduling of quay cranes and speed adjustable vehicles in container terminals considering the dual-cycling strategy. Under such a strategy, a combination of loading and unloading containers are handled by a set of cranes (moved between ships and vehicles) and transported by a set of vehicles (transported between the quayside and the storage area). The problem consists of four components: crane scheduling, vehicle assignment, vehicle scheduling, and speed assignment both for empty and loaded journey legs. The results show that an approximated true Pareto front can be found by solving the proposed MILP model and that the mp-BRKGA finds uniformly distributed Pareto fronts, close to the true ones. Additionally, the results clearly demonstrate the advantages of considering speed adjustable vehicles since both the makespan and the energy consumption can be considerably reduced.
2023
Authors
Campinho, DG; Fontes, DBMM; Ferreira, AFP; Fontes, FACC;
Publication
IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2023, Singapore, December 18-21, 2023
Abstract
This article addresses the significant issue of job deterioration effects in job-shop scheduling problems and aims to create awareness on its impact within the manufacturing industry. While previous studies have explored deteriorating effects in various production configurations, research on scheduling problems in complex settings, particularly job-shop, is very limited. Thus, we address and optimize the impact of job deterioration in a generic job-shop scheduling problem (JSP). The JSP with job deterioration is harder than the classical JSP as the processing time of an operation is only known when the operation is started. Hence, we propose a biased random key genetic algorithm to find good quality solutions quickly. Through computational experiments, the effectiveness of the algorithm and its multi-population variant is demonstrated. Further, we investigate several deterioration functions, including linear, exponential, and sigmoid. Job deterioration increases operations' processing time, which leads to an increase in the total production time (makespan). Therefore, the management should not ignore deterioration effects as they may lead to a decrease in productivity, to an increase in production time, costs, and waste production, as well to a deterioration in the customer relations due to frequent disruptions and delays. Finally, the computational results reported clearly show that the proposed approach is capable of mitigating (almost nullifying) such impacts. © 2023 IEEE.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.