Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by LIAAD

2007

Long-Range Dependence in Heart Rate Variability Data: ARFIMA Modelling vs Detrended Fluctuation Analysis

Authors
Leite, A; Rocha, AP; Silva, ME; Gouveia, S; Carvalho, J; Costa, O;

Publication
COMPUTERS IN CARDIOLOGY 2007, VOL 34

Abstract
Heart rate variability (HRV) data display non-stationary characteristics and exhibit long-range correlation (memory). Detrended fluctuation analysis (DFA) has become a widely-used technique for long memory estimation in non-stationary HRV data. Recently, we have proposed an alternative approach based on fractional integrated autoregressive moving average (ARFIMA) models. ARFIMA models, combined with selective adaptive segmentation may be used to capture and remove long-range correlation, leading to an improved description and interpretation of tire components in 24 hour HRV recordings. In this work estimation of long memory by DFA and selective adaptive ARFIMA modelling is carried out in 24 hour HRV recordings of 17 healthy subjects of two age groups. The two methods give similar information on long-range global characteristics. However ARFIMA modelling is advantageous, allowing the description of long-range correlation in reduced length segments.

2006

Visual interactive subgroup discovery with numerical properties of interest

Authors
Jorge, AM; Pereira, F; Azevedo, PJ;

Publication
DISCOVERY SCIENCE, PROCEEDINGS

Abstract
We propose an approach to subgroup discovery using distribution rules (a kind of association rules with a probability distribution on the consequent) for numerical properties of interest. The objective interest of the subgroups is measured through statistical goodness of fit tests. Their subjective interest can be assessed by the data analyst through a visual interactive subgroup browsing procedure.

2006

Improving SVM-linear predictions using CART for example selection

Authors
Moreira, JM; Jorge, AM; Soares, C; de Sousa, JF;

Publication
FOUNDATIONS OF INTELLIGENT SYSTEMS, PROCEEDINGS

Abstract
This paper describes the study on example selection in regression problems using mu-SVM (Support Vector Machine) linear as prediction algorithm. The motivation case is a study done on real data for a problem of bus trip time prediction. In this study we use three different training sets: all the examples, examples from past days similar to the day where prediction is needed, and examples selected by a CART regression tree. Then, we verify if the CART based example selection approach is appropriate on different regression data sets. The experimental results obtained are promising.

2006

Distribution rules with numeric attributes of interest

Authors
Jorge, AM; Azevedo, PJ; Pereira, F;

Publication
KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2006, PROCEEDINGS

Abstract
In this paper we introduce distribution rules, a kind of association rules with a distribution on the consequent. Distribution rules are related to quantitative association rules but can be seen as a more fundamental concept, useful for learning distributions. We formalize the main concepts and indicate applications to tasks such as frequent pattern discovery, sub group discovery and forecasting. An efficient algorithm for the generation of distribution rules is described. We also provide interest measures, visualization techniques and evaluation.

2006

Factor analysis to support the visualization and interpretation of clusters of portal users

Authors
Rebelo, C; Brito, PQ; Soares, C; Jorge, A;

Publication
2006 IEEE/WIC/ACM International Conference on Web Intelligence, (WI 2006 Main Conference Proceedings)

Abstract
Clusterings based on many variables are difficult to visualize and interpret. We present a methodology based on Factor Analysis (FA) which can be used for that purpose. FA generates a small set of variables which encode most of the information in the original variables. We apply the methodology to segment the users of a web portal, using access log data. It not only makes it simpler to visualize and understand the clusters which are obtained on the original variables but it also helps the analyst in selecting some of the original variables for further analysis of those clusters.

2006

Personalization of e-newsletters based on web log analysis and clustering

Authors
Carvalho, C; Jorge, AM; Soares, C;

Publication
2006 IEEE/WIC/ACM International Conference on Web Intelligence, (WI 2006 Main Conference Proceedings)

Abstract
We present a methodology for the personalization of e-newsletters based on the analysis of user access logs. To approach the problem we have used clustering on the set of users, described by their web access patterns. Our work is evaluated using a case study with real data from e-newsletters sent by mail to users of a web portal, and can be adapted to similar situations. Positive results were obtained, indicating that the methodology is able to automatically select contents for a personalized e-newsletter.

  • 461
  • 506