Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by LIAAD

2010

A Similarity-Based Adaptation of Naive Bayes for Label Ranking: Application to the Metalearning Problem of Algorithm Recommendation

Authors
Aiguzhinov, A; Soares, C; Serra, AP;

Publication
DISCOVERY SCIENCE, DS 2010

Abstract
The problem of learning label rankings is receiving increasing attention from several research communities. A number of common learning algorithms have been adapted for this task, including k-Nearest Neighbours (k-NN) and decision trees. Following this line, we propose an adaptation of the naive Bayes classification algorithm for the label ranking problem. Our main idea lies in the use of similarity between the rankings to replace the concept of probability. We empirically test the proposed method on some metalearning problems that consist of relating characteristics of learning problems to the relative performance of learning algorithms. Our method generally performs better than the baseline indicating that it is able to identify some of the underlying patterns in the data.

2010

Frontiers in Artificial Intelligence and Applications: Preface

Authors
Soares, C; Ghani, R;

Publication
Frontiers in Artificial Intelligence and Applications

Abstract

2010

Validation of both number and coverage of bus schedules using AVL data

Authors
Matias, L; Gama, J; Moreira, JM; de Sousa, JF;

Publication
13th International IEEE Conference on Intelligent Transportation Systems, Funchal, Madeira, Portugal, 19-22 September 2010

Abstract
It is well known that the definition of bus schedules is critical for the service reliability of public transports. Several proposals have been suggested, using data from Automatic Vehicle Location (AVL) systems, in order to enhance the reliability of public transports. In this paper we study the optimum number of schedules and the days covered by each one of them, in order to increase reliability. We use the Dynamic Time Warping distance in order to calculate the similarities between two different dimensioned irregularly spaced data sequences before the use of data clustering techniques. The application of this methodology with the K-Means for a specific bus route demonstrated that a new schedule for the weekends in non-scholar periods could be considered due to its distinct profile from the remaining days. For future work, we propose to apply this methodology to larger data sets in time and in number, corresponding to different bus routes, in order to find a consensual cluster between all the routes. ©2010 IEEE.

2010

Change Detection with Kalman Filter and CUSUM

Authors
Severo, Milton; Gama, Joao;

Publication
Ubiquitous Knowledge Discovery - Challenges, Techniques, Applications

Abstract
In most challenging applications learning algorithms act in dynamic environments where the data is collected over time. A desirable property of these algorithms is the ability of incremental incorporating new data in the actual decision model. Several incremental learning algorithms have been proposed. However most of them make the assumption that the examples are drawn from a stationary distribution [14]. The aim of this study is to present a detection system (DSKC) for regression problems. The system is modular and works as a post-processor of a regressor. It is composed by a regression predictor, a Kalman filter and a Cumulative Sum of Recursive Residual (CUSUM) change detector. The system continuously monitors the error of the regression model. A significant increase of the error is interpreted as a change in the distribution that generates the examples over time. When a change is detected, the actual regression model is deleted and a new one is constructed. In this paper we tested DSKC with a set of three artificial experiments, and two real-world datasets: a Physiological dataset and a clinic dataset of sleep apnoea. Sleep apnoea is a common disorder characterized by periods of breathing cessation (apnoea) and periods of reduced breathing (hypopnea) [7]. This is a real-world application where the goal is to detect changes in the signals that monitor breathing. The experimental results showed that the system detected changes fast and with high probability. The results also showed that the system is robust to false alarms and can be applied with efficiency to problems where the information is available over time. © 2010 Springer-Verlag.

2010

Resource Aware Distributed Knowledge Discovery

Authors
Gama, J; Cornuéjols, A;

Publication
Ubiquitous Knowledge Discovery - Challenges, Techniques, Applications

Abstract
In the introduction it was argued that ubiquitous knowledge discovery systems have to be able to sense their environment and receive data from other devices, to adapt continuously to changing environmental conditions (including their own condition) and evolving user habits and need be capable of predictive self-diagnosis. In the last chapter, resource constraints arising from ubiquitous environments have been discussed in some detail. It has been argued that algorithms have to be resource-aware because of real-time constraints and of limited computing and battery power as well as communication resources. © 2010 Springer-Verlag.

2010

Knowledge Discovery from Sensor Data

Authors
Gaber, MM; Vatsavai, RR; Omitaomu, OA; Gama, J; Chawla, NV; Ganguly, AR;

Publication
Lecture Notes in Computer Science

Abstract

  • 412
  • 506