Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by LIAAD

2025

Network-Based Anomaly Detection in Waste Transportation Data

Authors
Shaji, N; Tabassum, S; Ribeiro, RP; Gama, J; Santana, P; Garcia, A;

Publication
COMPLEX NETWORKS & THEIR APPLICATIONS XIII, COMPLEX NETWORKS 2024, VOL 1

Abstract
Waste transport management is a critical sector where maintaining accurate records and preventing fraudulent or illegal activities is essential for regulatory compliance, environmental protection, and public safety. However, monitoring and analyzing large-scale waste transport records to identify suspicious patterns or anomalies is a complex task. These records often involve multiple entities and exhibit variability in waste flows between them. Traditional anomaly detection methods relying solely on individual transaction data, may struggle to capture the deeper, network-level anomalies that emerge from the interactions between entities. To address this complexity, we propose a hybrid approach that integrates network-based measures with machine learning techniques for anomaly detection in waste transport data. Our method leverages advanced graph analysis techniques, such as sub-graph detection, community structure analysis, and centrality measures, to extract meaningful features that describe the network's topology. We also introduce novel metrics for edge weight disparities. Further, advanced machine learning techniques, including clustering, neural network, density-based, and ensemble methods are applied to these structural features to enhance and refine the identification of anomalous behaviors.

2025

Screening Urban Soil Contamination in Rome: Insights from XRF and Multivariate Analysis

Authors
Chandramohan, MS; da Silva, IM; Ribeiro, RP; Jorge, A; da Silva, JE;

Publication
ENVIRONMENTS

Abstract
This study investigates spatial distribution and chemical elemental composition screening in soils in Rome (Italy) using X-ray fluorescence analysis. Fifty-nine soil samples were collected from various locations within the urban areas of the Rome municipality and were analyzed for 19 elements. Multivariate statistical techniques, including nonlinear mapping, principal component analysis, and hierarchical cluster analysis, were employed to identify clusters of similar soil samples and their spatial distribution and to try to obtain environmental quality information. The soil sample clusters result from natural geological processes and anthropogenic activities on soil contamination patterns. Spatial clustering using the k-means algorithm further identified six distinct clusters, each with specific geographical distributions and elemental characteristics. Hence, the findings underscore the importance of targeted soil assessments to ensure the sustainable use of land resources in urban areas.

2025

Efficient Instance Selection in Tree-Based Models for Data Streams Classification

Authors
Paim, AM; Gama, J; Veloso, B; Enembreck, F; Ribeiro, RP;

Publication
40TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING

Abstract
The learning from continuous data streams is a relevant area within machine learning, focusing on the creation and updating of predictive models in real time as new data becomes available for training and prediction. Among the most widely used methods for this type of task, Hoeffding Trees are highly valued for their simplicity and robustness across a variety of applications and are considered the primary choice for generating decision trees in data stream contexts. However, Hoeffding Trees tend to continuously expand as new data is incorporated, resulting in increased processing time and memory consumption, often without providing significant gains in accuracy. In this study, we propose an instance selection scheme that combines different strategies to regularize Hoeffding Trees and their variants, mitigating excessive growth without compromising model accuracy. The method selects misclassified instances and a fraction of correctly classified instances during the training phase. After extensive experimental evaluation, the instance selection scheme demonstrates superior predictive performance compared to the original models (without selection), for both real and synthetic datasets for data streams, using a reduced subset of examples. Additionally, the method achieves relevant improvements in processing time, model complexity, and memory consumption, highlighting the effectiveness of the proposed instance selection scheme.

2025

CART-based Synthetic Tabular Data Generation for Imbalanced Regression

Authors
Pinheiro, AP; Ribeiro, RP;

Publication
CoRR

Abstract

2025

Parametric models for distributional data

Authors
Brito, P; Silva, APD;

Publication
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION

Abstract
We present parametric probabilistic models for numerical distributional variables. The proposed models are based on the representation of each distribution by a location measure and inter-quantile ranges, for given quantiles, thereby characterizing the underlying empirical distributions in a flexible way. Multivariate Normal distributions are assumed for the whole set of indicators, considering alternative structures of the variance-covariance matrix. For all cases, maximum likelihood estimators of the corresponding parameters are derived. This modelling allows for hypothesis testing and multivariate parametric analysis. The proposed framework is applied to Analysis of Variance and parametric Discriminant Analysis of distributional data. A simulation study examines the performance of the proposed models in classification problems under different data conditions. Applications to Internet traffic data and Portuguese official data illustrate the relevance of the proposed approach.

2025

Air Quality Data Analysis with Symbolic Principal Components

Authors
Loureiro, P; Oliveira, M; Brito, P; Oliveira, L;

Publication
Springer Proceedings in Mathematics and Statistics

Abstract
Air pollution is a global challenge with deep implications in public health and environment. We examine air quality data from a monitoring station in Entrecampos, Lisbon, Portugal, using Symbolic Data Analysis. The dataset consists of hourly concentrations of nine pollutants during three years, which are logarithmically transformed and aggregated in intervals, taking the daily minimum and maximum values. The symbolic mean and variance are estimated for each variable through the method of moments, and the pairwise dependencies are captured using a bivariate copula. Symbolic principal component scores are obtained from the estimated covariance matrix and used to fit generalized extreme value distributions. Outlier maps, based on these distributions’ quantiles, are used to identify outlying observations. A comparative analysis with daily average-based outlier detection methods is conducted. The results show the relevance of Symbolic Data Analysis in revealing new insights into air quality. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

  • 3
  • 503