Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by LIAAD

2017

Metalearning for Context-aware Filtering: Selection of Tensor Factorization Algorithms

Authors
Cunha, T; Soares, C; de Carvalho, ACPLF;

Publication
PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17)

Abstract
This work addresses the problem of selecting Tensor Factorization algorithms for the Context-aware Filtering recommendation task using a metalearning approach. The most important challenge of applying metalearning on new problems is the development of useful measures able to characterize the data, i.e. metafeatures. We propose an extensive and exhaustive set of metafeatures to characterize Context-aware Filtering recommendation task. These metafeatures take advantage of the tensor's hierarchical structure via slice operations. The algorithm selection task is addressed as a Label Ranking problem, which ranks the Tensor Factorization algorithms according to their expected performance, rather than simply selecting the algorithm that is expected to obtain the best performance. A comprehensive experimental work is conducted on both levels, baselevel and metalevel (Tensor Factorization and Label Ranking, respectively). The results show that the proposed metafeatures lead to metamodels that tend to rank Tensor Factorization algorithms accurately and that the selected algorithms present high recommendation performance.

2017

autoBagging: Learning to Rank Bagging Workflows with Metalearning

Authors
Pinto, F; Cerqueira, V; Soares, C; Moreira, JM;

Publication
Proceedings of the International Workshop on Automatic Selection, Configuration and Composition of Machine Learning Algorithms co-located with the European Conference on Machine Learning & Principles and Practice of Knowledge Discovery in Databases, AutoML@PKDD/ECML 2017, Skopje, Macedonia, September 22, 2017.

Abstract
Machine Learning (ML) has been successfully applied to a wide range of domains and applications. One of the techniques behind most of these successful applications is Ensemble Learning (EL), the field of ML that gave birth to methods such as Random Forests or Boosting. The complexity of applying these techniques together with the market scarcity on ML experts, has created the need for systems that enable a fast and easy drop-in replacement for ML libraries. Automated machine learning (autoML) is the field of ML that attempts to answers these needs. We propose autoBagging, an autoML system that automatically ranks 63 bagging workflows by exploiting past performance and metalearning. Results on 140 classification datasets from the OpenML platform show that autoBagging can yield better performance than the Average Rank method and achieve results that are not statistically different from an ideal model that systematically selects the best workflow for each dataset. For the purpose of reproducibility and generalizability, autoBagging is publicly available as an R package on CRAN.

2017

A guidance of data stream characterization for meta-learning

Authors
Debiaso Rossi, ALD; de Souza, BF; Soares, C; de Leon Ferreira de Carvalho, ACPDF;

Publication
INTELLIGENT DATA ANALYSIS

Abstract
The problem of selecting learning algorithms has been studied by the meta-learning community for more than two decades. One of the most important task for the success of a meta-learning system is gathering data about the learning process. This data is used to induce a (meta) model able to map characteristics extracted from different data sets to the performance of learning algorithms on these data sets. These systems are built under the assumption that the data are generated by a stationary distribution, i.e., a learning algorithm will perform similarly for new data from the same problem. However, many applications generate data whose characteristics can change over time. Therefore, a suitable bias at a given time may become inappropriate at another time. Although meta-learning has been used to continuously select a learning algorithm in data streams, data characterization has received less attention in this context. In this study, we provide a set of guidelines to support the proposal of characteristics able to describe non-stationary data over time. This guidance considers both the order of arrival of the examples and the type of variables involved in the base-level learning. In addition, we analyze the influence of characteristics regarding their dependence on data morphology. Experimental results using real data streams showed the effectiveness of the proposed data characterization general scheme to support algorithm selection by meta-learning systems. Moreover, the dependent metafeatures provided crucial information for the success of some meta-models.

2017

Arbitrated Ensemble for Time Series Forecasting

Authors
Cerqueira, V; Torgo, L; Pinto, F; Soares, C;

Publication
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT II

Abstract
This paper proposes an ensemble method for time series forecasting tasks. Combining different forecasting models is a common approach to tackle these problems. State-of-the-art methods track the loss of the available models and adapt their weights accordingly. Metalearning strategies such as stacking are also used in these tasks. We propose a metalearning approach for adaptively combining forecasting models that specializes them across the time series. Our assumption is that different forecasting models have different areas of expertise and a varying relative performance. Moreover, many time series show recurring structures due to factors such as seasonality. Therefore, the ability of a method to deal with changes in relative performance of models as well as recurrent changes in the data distribution can be very useful in dynamic environments. Our approach is based on an ensemble of heterogeneous forecasters, arbitrated by a metalearning model. This strategy is designed to cope with the different dynamics of time series and quickly adapt the ensemble to regime changes. We validate our proposal using time series from several real world domains. Empirical results show the competitiveness of the method in comparison to state-of-the-art approaches for combining forecasters.

2017

TexRep: A Text Mining Framework for Online Reputation Monitoring

Authors
Saleiro, P; Rodrigues, EM; Soares, C; Oliveira, E;

Publication
NEW GENERATION COMPUTING

Abstract
This work aims to understand, formalize and explore the scientific challenges of using unstructured text data from different Web sources for Online Reputation Monitoring. We here present TexRep, an adaptable text mining framework specifically tailored for Online Reputation Monitoring that can be reused in multiple application scenarios, from politics to finance. This framework is able to collect texts from online media, such as Twitter, and identify entities of interest and classify sentiment polarity and intensity. The framework supports multiple data aggregation methods, as well as visualization and modeling techniques that can be used for both descriptive analytics, such as analyze how political polls evolve over time, and predictive analytics, such as predict elections. We here present case studies that illustrate and validate TexRep for Online Reputation Monitoring. In particular, we provide an evaluation of TexRep Entity Filtering and Sentiment Analysis modules using well known external benchmarks. We also present an illustrative example of TexRep application in the political domain.

2017

Early Fusion Strategy for Entity-Relationship Retrieval

Authors
Saleiro, P; Frayling, NM; Rodrigues, EM; Soares, C;

Publication
Proceedings of the First Workshop on Knowledge Graphs and Semantics for Text Retrieval and Analysis (KG4IR 2017) co-located with the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2017), Shinjuku, Tokyo, Japan, August 11, 2017.

Abstract
We address the task of entity-relationship (E-R) retrieval, i.e, given a query characterizing types of two or more entities and relationships between them, retrieve the relevant tuples of related entities. Answering E-R queries requires gathering and joining evidence from multiple unstructured documents. In this work, we consider entity and relationships of any type, i.e, characterized by context terms instead of pre-defined types or relationships. We propose a novel IR-centric approach for E-R retrieval, that builds on the basic early fusion design pattern for object retrieval, to provide extensible entity-relationship representations, suitable for complex, multi-relationships queries. We performed experiments with Wikipedia articles as entity representations combined with relationships extracted from ClueWeb-09-B with FACC1 entity linking. We obtained promising results using 3 different query collections comprising 469 E-R queries. © Copyright by the paper's authors.

  • 258
  • 514