Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by LIAAD

2017

RUTICO: Recommending Successful Learning Paths under Time Constraints

Authors
Nabizadeh, AH; Jorge, AM; Leal, JP;

Publication
ADJUNCT PUBLICATION OF THE 25TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'17)

Abstract
Nowadays using E-learning platforms such as Intelligent Tutoring Systems (ITS) that support users to learn subjects are quite common. Despite the availability and the advantages of these systems, they ignore the learners' time limitation for learning a subject. In this paper we propose RUTICO, that recommends successful learning paths with respect to a learner's knowledge background and under a time constraint. RUTICO, which is an example of Long Term goal Recommender Systems (LTRS), a.er locating a learner in the course graph, it utilizes a Depth-first search (DFS) algorithm to find all possible paths for a learner given a time restriction. RUTICO also estimates learning time and score for the paths and finally, it recommends a path with the maximum score that satisfies the learner time restriction. In order to evaluate the ability of RUTICO in estimating time and score for paths, we used the Mean Absolute Error and Error. Our results show that we are able to generate a learning path that maximizes a learner's score under a time restriction. © 2017 ACM.

2017

Raman imaging studies on the adsorption of methylene blue species onto silver modified linen fibers

Authors
Fateixa, S; Wilhelm, M; Jorge, AM; Nogueira, HIS; Trindade, T;

Publication
JOURNAL OF RAMAN SPECTROSCOPY

Abstract
We demonstrate in this research that surface-enhanced resonance Raman scattering combined with Raman imaging can be effectively used for analysis of distinct forms of organic dyes in antimicrobial Ag-loaded textile fibers. The potential of this approach, as a non-destructive characterization method of fabrics, was evaluated with Raman studies performed on the molecular forms of methylene blue (MB), used here as the organic dye model. On the basis of the surface-enhanced Raman scattering spectra of MB monomers and dimers, the Raman imaging of Ag-loaded linen fibers previously treated with MB solution was performed and then used for identification of the adsorbate species in distinct regions of the substrates. A semi-quantitative analysis is then performed by considering the area of the Raman bands ascribed to the MB molecular forms and image analysis applied to Raman images. Copyright (c) 2017 John Wiley & Sons, Ltd.

2017

An Overview of Data Mining Applications in Oil and Gas Exploration: Structural Geology and Reservoir Property-Issues

Authors
Jahromi, HN; Jorge, AM;

Publication
CoRR

Abstract

2017

Mind the Gap: A Well Log Data Analysis

Authors
Lopes, RuiL.; Jorge, Alipio;

Publication
CoRR

Abstract

2017

Proceedings of the Workshop on Data Mining for Oil and Gas

Authors
Jorge, AlipioMario; Larrazábal, German; Guillén, Pablo; Lopes, RuiL.;

Publication
CoRR

Abstract

2017

Relevance-Based Evaluation Metrics for Multi-class Imbalanced Domains

Authors
Branco, P; Torgo, L; Ribeiro, RP;

Publication
ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2017, PT I

Abstract
The class imbalance problem is a key issue that has received much attention. This attention has been mostly focused on two-classes problems. Fewer solutions exist for the multi-classes imbalance problem. From an evaluation point of view, the class imbalance problem is challenging because a non-uniform importance is assigned to the classes. In this paper, we propose a relevance-based evaluation framework that incorporates user preferences by allowing the assignment of differentiated importance values to each class. The presented solution is able to overcome difficulties detected in existing measures and increases discrimination capability. The proposed framework requires the assignment of a relevance score to the problem classes. To deal with cases where the user is not able to specify each class relevance, we describe three mechanisms to incorporate the existing domain knowledge into the relevance framework. These mechanisms differ in the amount of information available and assumptions made regarding the domain. They also allow the use of our framework in common settings of multi-class imbalanced problems with different levels of information available. © 2017, Springer International Publishing AG.

  • 255
  • 514