Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by LIAAD

2018

Minimal Implications Base for Social Network Analyzes

Authors
Raissa, P; Dias, S; Song, M; Zárate, L;

Publication
International Journal of Web Information Systems

Abstract

2018

Professional Competence Identification Through Formal Concept Analysis

Authors
Silva, PR; Dias, SM; Brandão, WC; Song, MA; Zárate, LE;

Publication
Enterprise Information Systems - Lecture Notes in Business Information Processing

Abstract

2018

The effects of death and post-mortem cold ischemia on human tissue transcriptomes

Authors
Ferreira, PG; Munoz Aguirre, M; Reverter, F; Sa Godinho, CPS; Sousa, A; Amadoz, A; Sodaei, R; Hidalgo, MR; Pervouchine, D; Carbonell Caballero, J; Nurtdinov, R; Breschi, A; Amador, R; Oliveira, P; Cubuk, C; Curado, J; Aguet, F; Oliveira, C; Dopazo, J; Sammeth, M; Ardlie, KG; Guigo, R;

Publication
NATURE COMMUNICATIONS

Abstract
Post-mortem tissues samples are a key resource for investigating patterns of gene expression. However, the processes triggered by death and the post-mortem interval (PMI) can significantly alter physiologically normal RNA levels. We investigate the impact of PMI on gene expression using data from multiple tissues of post-mortem donors obtained from the GTEx project. We find that many genes change expression over relatively short PMIs in a tissue-specific manner, but this potentially confounding effect in a biological analysis can be minimized by taking into account appropriate covariates. By comparing ante-and postmortem blood samples, we identify the cascade of transcriptional events triggered by death of the organism. These events do not appear to simply reflect stochastic variation resulting from mRNA degradation, but active and ongoing regulation of transcription. Finally, we develop a model to predict the time since death from the analysis of the transcriptome of a few readily accessible tissues.

2018

Bioinformatics algorithms: Design and implementation in python

Authors
Rocha, M; Ferreira, PG;

Publication
Bioinformatics Algorithms: Design and Implementation in Python

Abstract
Bioinformatics Algorithms: Design and Implementation in Python provides a comprehensive book on many of the most important bioinformatics problems, putting forward the best algorithms and showing how to implement them. The book focuses on the use of the Python programming language and its algorithms, which is quickly becoming the most popular language in the bioinformatics field. Readers will find the tools they need to improve their knowledge and skills with regard to algorithm development and implementation, and will also uncover prototypes of bioinformatics applications that demonstrate the main principles underlying real world applications.

2018

Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics

Authors
Barbeira, AN; Dickinson, SP; Bonazzola, R; Zheng, J; Wheeler, HE; Torres, JM; Torstenson, ES; Shah, KP; Garcia, T; Edwards, TL; Stahl, EA; Huckins, LM; Aguet, F; Ardlie, KG; Cummings, BB; Gelfand, ET; Getz, G; Hadley, K; Handsaker, RE; Huang, KH; Kashin, S; Karczewski, KJ; Lek, M; Li, X; MacArthur, DG; Nedzel, JL; Nguyen, DT; Noble, MS; Segrè, AV; Trowbridge, CA; Tukiainen, T; Abell, NS; Balliu, B; Barshir, R; Basha, O; Battle, A; Bogu, GK; Brown, A; Brown, CD; Castel, SE; Chen, LS; Chiang, C; Conrad, DF; Damani, FN; Davis, JR; Delaneau, O; Dermitzakis, ET; Engelhardt, BE; Eskin, E; Ferreira, PG; Frésard, L; Gamazon, ER; Garrido Martín, D; Gewirtz, ADH; Gliner, G; Gloudemans, MJ; Guigo, R; Hall, IM; Han, B; He, Y; Hormozdiari, F; Howald, C; Jo, B; Kang, EY; Kim, Y; Kim Hellmuth, S; Lappalainen, T; Li, G; Li, X; Liu, B; Mangul, S; McCarthy, MI; McDowell, IC; Mohammadi, P; Monlong, J; Montgomery, SB; Muñoz Aguirre, M; Ndungu, AW; Nobel, AB; Oliva, M; Ongen, H; Palowitch, JJ; Panousis, N; Papasaikas, P; Park, Y; Parsana, P; Payne, AJ; Peterson, CB; Quan, J; Reverter, F; Sabatti, C; Saha, A; Sammeth, M; Scott, AJ; Shabalin, AA; Sodaei, R; Stephens, M; Stranger, BE; Strober, BJ; Sul, JH; Tsang, EK; Urbut, S; Van De Bunt, M; Wang, G; Wen, X; Wright, FA; Xi, HS; Yeger Lotem, E; Zappala, Z; Zaugg, JB; Zhou, YH; Akey, JM; Bates, D; Chan, J; Claussnitzer, M; Demanelis, K; Diegel, M; Doherty, JA; Feinberg, AP; Fernando, MS; Halow, J; Hansen, KD; Haugen, E; Hickey, PF; Hou, L; Jasmine, F; Jian, R; Jiang, L; Johnson, A; Kaul, R; Kellis, M; Kibriya, MG; Lee, K; Li, JB; Li, Q; Lin, J; Lin, S; Linder, S; Linke, C; Liu, Y; Maurano, MT; Molinie, B; Nelson, J; Neri, FJ; Park, Y; Pierce, BL; Rinaldi, NJ; Rizzardi, LF; Sandstrom, R; Skol, A; Smith, KS; Snyder, MP; Stamatoyannopoulos, J; Tang, H; Wang, L; Wang, M; Van Wittenberghe, N; Wu, F; Zhang, R; Nierras, CR; Branton, PA; Carithers, LJ; Guan, P; Moore, HM; Rao, A; Vaught, JB; Gould, SE; Lockart, NC; Martin, C; Struewing, JP; Volpi, S; Addington, AM; Koester, SE; Little, AR; Brigham, LE; Hasz, R; Hunter, M; Johns, C; Johnson, M; Kopen, G; Leinweber, WF; Lonsdale, JT; McDonald, A; Mestichelli, B; Myer, K; Roe, B; Salvatore, M; Shad, S; Thomas, JA; Walters, G; Washington, M; Wheeler, J; Bridge, J; Foster, BA; Gillard, BM; Karasik, E; Kumar, R; Miklos, M; Moser, MT; Jewell, SD; Montroy, RG; Rohrer, DC; Valley, DR; Davis, DA; Mash, DC; Undale, AH; Smith, AM; Tabor, DE; Roche, NV; McLean, JA; Vatanian, N; Robinson, KL; Sobin, L; Barcus, ME; Valentino, KM; Qi, L; Hunter, S; Hariharan, P; Singh, S; Um, KS; Matose, T; Tomaszewski, MM; Barker, LK; Mosavel, M; Siminoff, LA; Traino, HM; Flicek, P; Juettemann, T; Ruffier, M; Sheppard, D; Taylor, K; Trevanion, SJ; Zerbino, DR; Craft, B; Goldman, M; Haeussler, M; Kent, WJ; Lee, CM; Paten, B; Rosenbloom, KR; Vivian, J; Zhu, J; Nicolae, DL; Cox, NJ; Im, HK;

Publication
Nature Communications

Abstract
Scalable, integrative methods to understand mechanisms that link genetic variants with phenotypes are needed. Here we derive a mathematical expression to compute PrediXcan (a gene mapping approach) results using summary data (S-PrediXcan) and show its accuracy and general robustness to misspecified reference sets. We apply this framework to 44 GTEx tissues and 100+ phenotypes from GWAS and meta-analysis studies, creating a growing public catalog of associations that seeks to capture the effects of gene expression variation on human phenotypes. Replication in an independent cohort is shown. Most of the associations are tissue specific, suggesting context specificity of the trait etiology. Colocalized significant associations in unexpected tissues underscore the need for an agnostic scanning of multiple contexts to improve our ability to detect causal regulatory mechanisms. Monogenic disease genes are enriched among significant associations for related traits, suggesting that smaller alterations of these genes may cause a spectrum of milder phenotypes. © 2018 The Author(s).

2018

Model-Based Classification of Heart Rate Variability.

Authors
Leite, Argentina; Silva, MariaEduarda; Rocha, AnaPaula;

Publication
Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference

Abstract
Several Heart Rate Variability (HRV) based novel methodologies for describing heart rate dynamics have been proposed in the literature with the aim of risk assessment. One such methodology is ARFIMA-EGARCH modeling which allows the quantification of long range dependence and time-varying volatility with the aim of describing non-linear and complex characteristics of HRV. This study applies the ARFIMA-EGARCH modeling of HRV recordings from 30 patients of the Noltisalis database to investigate the discrimination power of a set of features comprising currently used linear HRV features (low and high frequency components) and new measures obtained from the modeling such as, long memory in the mean, and persistence and asymmetry in volatility. A subset of the multidimensional HRV features is selected in a two-step procedure using Principal Components Analysis (PCA). Additionally, supervised classification by quadratic discriminant analysis achieves 93.3% of discrimination accuracy between the groups using the new feature set created by PCA.

  • 249
  • 514