Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by LIAAD

2019

Adaptive Sojourn Time HSMM for Heart Sound Segmentation

Authors
Oliveira, J; Renna, F; Mantadelis, T; Coimbra, M;

Publication
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

Abstract
Heart sounds are difficult to interpret due to events with very short temporal onset between them (tens of milliseconds) and dominant frequencies that are out of the human audible spectrum. Computer-assisted decision systems may help but they require robust signal processing algorithms. In this paper, we propose a new algorithm for heart sound segmentation using a hidden semi-Markov model. The proposed algorithm infers more suitable sojourn time parameters than those currently suggested by the state of the art, through a maximum likelihood approach. We test our approach over three different datasets, including the publicly available PhysioNet and Pascal datasets. We also release a pediatric dataset composed of 29 heart sounds. In contrast with any other dataset available online, the annotations of the heart sounds in the released dataset contain information about the beginning and the ending of each heart sound event. Annotations were made by two cardiopulmonologists. The proposed algorithm is compared with the current state of the art. The results show a significant increase in segmentation performance, regardless the dataset or the methodology presented. For example, when using the PhysioNet dataset to train and to evaluate the HSMMs, our algorithm achieved average an F-score of 92% compared to 89% achieved by the algorithm described in [D.B. Springer, L. Tarassenko, and G. D. Clifford, "Logistic regressionHSMM-based heart sound segmentation," IEEE Transactions on Biomedical Engineering, vol. 63, no. 4, pp. 822-832, 2016]. In this sense, the proposed approach to adapt sojourn time parameters represents an effective solution for heart sound segmentation problems, even when the training data does not perfectly express the variability of the testing data.

2019

Deep Convolutional Neural Networks for Heart Sound Segmentation

Authors
Renna, F; Oliveira, J; Coimbra, MT;

Publication
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

Abstract
This paper studies the use of deep convolutional neural networks to segment heart sounds into their main components. The proposed methods are based on the adoption of a deep convolutional neural network architecture, which is inspired by similar approaches used for image segmentation. Different temporal modeling schemes are applied to the output of the proposed neural network, which induce the output state sequence to be consistent with the natural sequence of states within a heart sound signal (S1, systole, S2, diastole). In particular, convolutional neural networks are used in conjunction with underlying hidden Markov models and hidden semi-Markov models to infer emission distributions. The proposed approaches are tested on heart sound signals from the publicly available PhysioNet dataset, and they are shown to outperform current state-of-the-art segmentation methods by achieving an average sensitivity of 93.9 and an average positive predictive value of 94 in detecting S1 and S2 sounds.

2019

Assessment of Sound Features for Needle Perforation Event Detection

Authors
Renna, F; Illanes, A; Oliveira, J; Esmaeili, N; Friebe, M; Coimbra, MT;

Publication
2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC)

Abstract
This paper studies the use of non-invasive acoustic emission recordings for clinical device tracking. In particular, audio signals recorded at the proximal end of a needle are used to detect perforation events that occur when the needle tip crosses internal tissue layers. A comparative study is performed to assess the capacity of different features and envelopes in detecting perforation events. The results obtained from the considered experimental setup show a statistically significant correlation between the extracted envelopes and the perforation events, thus leading the way for future development of perforation detection algorithms.

2019

Smart Marketing With the Internet of Things

Authors
Simões, D; Barbosa, B; Filipe, S;

Publication
Advances in Marketing, Customer Relationship Management, and E-Services

Abstract
No abstract available.

2019

Millennials Views on Luxury Ecotourism: A Qualitative Study with Portuguese Tourists

Authors
Costa, A; Abreu, M; Barbosa, B;

Publication
PROCEEDINGS OF THE INTERNATIONAL WORKSHOP TOURISM AND HOSPITALITY MANAGEMENT (IWTHM2019)

Abstract

2019

Digital Influencers: A Bibliometric Analysis

Authors
Neves, S; Barbosa, B; Carlos, V;

Publication
PROCEEDINGS OF THE INTERNATIONAL WORKSHOP TOURISM AND HOSPITALITY MANAGEMENT (IWTHM2019)

Abstract

  • 204
  • 503