2026
Authors
Ribeiro, RP; Pfahringer, B; Japkowicz, N; Larrañaga, P; Jorge, AM; Soares, C; Abreu, PH; Gama, J;
Publication
ECML/PKDD (1)
Abstract
2026
Authors
Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Jorge, AM; Soares, C; Abreu, PH; Gama, J;
Publication
ECML/PKDD (9)
Abstract
2026
Authors
Pfahringer, B; Japkowicz, N; Larrañaga, P; Ribeiro, RP; Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Jorge, AM; Soares, C; Abreu, PH; Gama, J;
Publication
ECML/PKDD (8)
Abstract
2026
Authors
Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Pasquali, A; Moniz, N; Jorge, AM; Soares, C; Abreu, PH; Gama, J;
Publication
ECML/PKDD (10)
Abstract
2026
Authors
Ribeiro, P; Japkowicz, N; Jorge, AM; Soares, C; Abreu, PH; Pfahringer, B; Gama, MP; Larrañaga, P; Dutra, I; Pechenizkiy, M; Pashami, S; Cortez, P;
Publication
Lecture Notes in Computer Science
Abstract
[No abstract available]
2026
Authors
Dintén, R; Zorrilla, M; Veloso, B; Gama, J;
Publication
INFORMATION FUSION
Abstract
One of the key aspects of Industry 4.0 is using intelligent systems to optimize manufacturing processes by improving productivity and reducing costs. These systems have greatly impacted in different areas, such as demand prediction and quality assessment. However, the prognostics and health management of industrial equipment is one of the areas with greater potential. This paper presents a comparative analysis of deep learning architectures applied to the prediction of the remaining useful life (RUL) on public real industrial datasets. The analysis includes some of the most commonly employed recurrent neural network variations and a novel approach based on a hybrid architecture using transformers. Moreover, we apply explainability techniques to provide comprehensive insights into the model's decision-making process. The contributions of the work are: (1) a novel transformer-based architecture for RUL prediction that outperforms traditional recurrent neural networks; (2) a detailed description of the design strategies used to construct the models on two under-explored datasets; (3) the use of explainability techniques to understand the feature importance and to explain the model's prediction and (4) making models built for reproducibility available to other researchers.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.