Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by LIAAD

2019

Preface: Workshop description

Authors
Gama, J;

Publication
Communications in Computer and Information Science

Abstract

2019

Discovering Common Pathways Across Users' Habits in Mobility Data

Authors
Andrade, T; Cancela, B; Gama, J;

Publication
Progress in Artificial Intelligence, 19th EPIA Conference on Artificial Intelligence, EPIA 2019, Vila Real, Portugal, September 3-6, 2019, Proceedings, Part II.

Abstract
Different activities are performed by people during the day and many aspects of life are associated with places of human mobility patterns. Among those activities, there are some that are recurrent and demand displacement of the individual between regular places like going to work, going to school, going back home from wherever the individual is located. To accomplish these recurrent daily activities, people tend to follow regular paths with similar temporal and spatial characteristics. In this paper, we propose a method for discovering common pathways across users’ habits. By using density-based clustering algorithms, we detect the users’ most preferable locations and apply a Gaussian Mixture Model (GMM) over these locations to automatically separate the trajectories that follow patterns of days and hours, in order to discover the representations of individual’s habits. Over the set of users’ habits, we search for the trajectories that are more common among them by using the Longest Common Sub-sequence (LCSS) algorithm considering the distance that pairs of users travel on the same path. To evaluate the proposed method we use a real-world GPS dataset. The results show that the method is able to find common routes between users that have similar habits paving the way for future recommendation, prediction and carpooling research techniques. © 2019, Springer Nature Switzerland AG.

2019

Human Activity Recognition Using Inertial Sensors in a Smartphone: An Overview

Authors
Lima, WS; Souto, E; El Khatib, K; Jalali, R; Gama, J;

Publication
SENSORS

Abstract
The ubiquity of smartphones and the growth of computing resources, such as connectivity, processing, portability, and power of sensing, have greatly changed people's lives. Today, many smartphones contain a variety of powerful sensors, including motion, location, network, and direction sensors. Motion or inertial sensors (e.g., accelerometer), specifically, have been widely used to recognize users' physical activities. This has opened doors for many different and interesting applications in several areas, such as health and transportation. In this perspective, this work provides a comprehensive, state of the art review of the current situation of human activity recognition (HAR) solutions in the context of inertial sensors in smartphones. This article begins by discussing the concepts of human activities along with the complete historical events, focused on smartphones, which shows the evolution of the area in the last two decades. Next, we present a detailed description of the HAR methodology, focusing on the presentation of the steps of HAR solutions in the context of inertial sensors. For each step, we cite the main references that use the best implementation practices suggested by the scientific community. Finally, we present the main results about HAR solutions from the perspective of the inertial sensors embedded in smartphones.

2019

Learning under Concept Drift: A Review

Authors
Lu, J; Liu, AJ; Dong, F; Gu, F; Gama, J; Zhang, GQ;

Publication
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Abstract
Concept drift describes unforeseeable changes in the underlying distribution of streaming data over time. Concept drift research involves the development of methodologies and techniques for drift detection, understanding, and adaptation. Data analysis has revealed that machine learning in a concept drift environment will result in poor learning results if the drift is not addressed. To help researchers identify which research topics are significant and how to apply related techniques in data analysis tasks, it is necessary that a high quality, instructive review of current research developments and trends in the concept drift field is conducted. In addition, due to the rapid development of concept drift in recent years, the methodologies of learning under concept drift have become noticeably systematic, unveiling a framework which has not been mentioned in literature. This paper reviews over 130 high quality publications in concept drift related research areas, analyzes up-to-date developments in methodologies and techniques, and establishes a framework of learning under concept drift including three main components: concept drift detection, concept drift understanding, and concept drift adaptation. This paper lists and discusses 10 popular synthetic datasets and 14 publicly available benchmark datasets used for evaluating the performance of learning algorithms aiming at handling concept drift. Also, concept drift related research directions are covered and discussed. By providing state-of-the-art knowledge, this survey will directly support researchers in their understanding of research developments in the field of learning under concept drift.

2019

Credit scoring for microfinance using behavioral data in emerging markets

Authors
Ruiz, S; Gomes, P; Rodrigues, L; Gama, J;

Publication
INTELLIGENT DATA ANALYSIS

Abstract
Emerging markets contain the vast majority of the world's population. Despite the enormous number of inhabitants, these markets still lack a proper finance infrastructure. One of the main difficulties felt by customers is the access to loans. This limitation arises from the fact that most customers usually lack a verifiable credit history. As such, traditional banks are unable to provide loans. This paper proposes credit scoring modeling based on non-traditional-data, acquired from smartphones, for loan classification processes. We use Logistic Regression (LR) and Support Vector Machine (SVM) models which are the top linear models in traditional banking. Then we compared the transformation of the training datasets creating boolean indicators against the categorization using Weight of Evidence (WoE). Our models surpassed the performance of the manual loan application selection process, improving the approval rate and decreasing the overdue rate. Compared to the baseline, the loans approved by meeting the criteria of the SVM model presented a decreased overdue rate. At the same time, using the score generated by a SVM model we were able to grant more loans. This paper shows that credit scoring can be useful in emerging markets. The non-traditional data can be used to build robust algorithms that can identify good borrowers as in traditional banking.

2019

Identifying, Ranking and Tracking Community Leaders in Evolving Social Networks

Authors
Cordeiro, M; Sarmento, RP; Brazdil, P; Kimura, M; Gama, J;

Publication
Complex Networks and Their Applications VIII - Volume 1 Proceedings of the Eighth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2019, Lisbon, Portugal, December 10-12, 2019.

Abstract
Discovering communities in a network is a fundamental and important problem to complex networks. Find the most influential actors among its peers is a major task. If on one side, studies on community detection ignore the influence of actors and communities, on the other hand, ignoring the hierarchy and community structure of the network neglect the actor or community influence. We bridge this gap by combining a dynamic community detection method with a dynamic centrality measure. The proposed enhanced dynamic hierarchical community detection method computes centrality for nodes and aggregated communities and selects each community representative leader using the ranked centrality of every node belonging to the community. This method is then able to unveil, track, and measure the importance of main actors, network intra and inter-community structural hierarchies based on a centrality measure. The empirical analysis performed, using two temporal networks shown that the method is able to find and tracking community leaders in evolving networks. © 2020, Springer Nature Switzerland AG.

  • 179
  • 497