2025
Authors
Zhao, RR; You, YQ; Sun, JB; Gama, J; Jiang, J;
Publication
INFORMATION PROCESSING & MANAGEMENT
Abstract
Capricious data streams, marked by random emergence and disappearance of features, are common in practical scenarios such as sensor networks. In existing research, they are mainly handled based on linear classifiers, feature correlation or ensemble of trees. There exist deficiencies such as limited learning capacity and high time cost. More importantly, the concept drift problem in them receives little attention. Therefore, drifting capricious data streams are focused on in this paper, and a new algorithm DCFHT (online learning from Drifting Capricious data streams with Flexible Hoeffding Tree) is proposed based on a single Hoeffding tree. DCFHT can achieve non-linear modeling and adaptation to drifts. First, DCFHT dynamically reuses and restructures the tree. The reusable information includes the tree structure and the information stored in each node. The restructuring process ensures that the Hoeffding tree dynamically aligns with the latest universal feature space. Second, DCFHT adapts to drifts in an informed way. When a drift is detected, DCFHT starts training a backup learner until it reaches the ability to replace the primary learner. Various experiments on 22 public and 15 synthetic datasets show that it is not only more accurate, but also maintains relatively low runtime on capricious data streams.
2025
Authors
Zhao, RR; Sun, JB; Gama, J; Jiang, J;
Publication
40TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING
Abstract
Capricious data streams make no assumptions on feature space dynamics and are mainly handled based on feature correlation, linear classifier or ensemble of trees. There exist deficiencies such as limited learning capacity, high time cost and low interpretability. To enhance effectiveness and efficiency, capricious data streams are handled through a single tree in this paper, and the proposed algorithm is named OCFHT (Online learning from Capricious data streams with Flexible Hoeffding Tree). OCFHT does not rely on the correlation pattern among features and can achieve non-linear modeling. Its performance is verified by various experiments on 18 public datasets, showing that it is not only more accurate than state-of-the-art algorithms, but also runs faster.
2025
Authors
Wu, X; Spiliopoulou, M; Wang, C; Kumar, V; Cao, L; Zhou, X; Pang, G; Gama, J;
Publication
PAKDD (7)
Abstract
2025
Authors
Wu, X; Spiliopoulou, M; Wang, C; Kumar, V; Cao, L; Zhou, X; Pang, G; Gama, J;
Publication
PAKDD (6)
Abstract
2025
Authors
Ferreira, MV; Souza, M; Rios, TN; Fernandes, IFC; Nery, J; Gama, J; Bifet, A; Rios, RA;
Publication
SCIENTIFIC DATA
Abstract
Efficient public transportation management is essential for the development of large urban centers, providing several benefits such as comprehensive coverage of population mobility, reduction of transport costs, better control of traffic congestion, and significant reduction of environmental impact limiting gas emissions and pollution. Realizing these benefits requires a deeply understanding the population and transit patterns and the adoption of approaches to model multiple relations and characteristics efficiently. This work addresses these challenges by providing a novel dataset that includes various public transportation components from three different systems: regular buses, subway, and BRT (Bus Rapid Transit). Our dataset comprises daily information from about 700,000 passengers in Salvador, one of Brazil's largest cities, and local public transportation data with approximately 2,000 vehicles operating across nearly 400 lines, connecting almost 3,000 stops and stations. With data collected from March 2024 to March 2025 at a frequency lower than one minute, SUNT stands as one of the largest, most comprehensive, and openly available urban datasets in the literature.
2025
Authors
Barbosa, I; Gama, J; Veloso, B;
Publication
Progress in Artificial Intelligence - 24th EPIA Conference on Artificial Intelligence, EPIA 2025, Faro, Portugal, October 1-3, 2025, Proceedings, Part II
Abstract
Predictive Maintenance (PdM) aims to prevent failures through early detection, yet lacks explainability to support decision-making. Current PdM models often identify failures, but fail to explain their root causes, especially in real-world scenarios, with complex and limited labeled data. This study proposes an interpretable framework that combines LSTM-based Anomaly Detection with a dual-layered Root Cause Analysis (RCA) based on SHAP attributions. Applied to a real-world dataset, the method detects degradation transitions, tracks failure patterns over time, and provides interpretable information without explicit root cause labels. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.