2021
Authors
Pinto, H; Pernice, R; Amado, C; Silva, ME; Javorka, M; Faes, L; Rocha, AP;
Publication
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC)
Abstract
Heart Period (H) results from the activity of several coexisting control mechanisms, involving Systolic Arterial Pressure (S) and Respiration (R), which operate across multiple time scales encompassing not only short-term dynamics but also long-range correlations. In this work, multiscale representation of Transfer Entropy (TE) and of its decomposition in the network of these three interacting processes is obtained by extending the multivariate approach based on linear parametric VAR models to the Vector AutoRegressive Fractionally Integrated (VARFI) framework for Gaussian processes. This approach allows to dissect the different contributions to cardiac dynamics accounting for the simultaneous presence of short and long term dynamics. The proposed method is first tested on simulations of a benchmark VARFI model and then applied to experimental data consisting of H, S and R time series measured in healthy subjects monitored at rest and during mental and postural stress. The results reveal that the proposed method can highlight the dependence of the information transfer on the balance between short-term and long-range correlations in coupled dynamical systems.
2021
Authors
Rocha, AP; Pinto, H; Amado, C; Silva, ME; Pernice, R; Javorka, M; Faes, L;
Publication
Proceedings of Entropy 2021: The Scientific Tool of the 21st Century
Abstract
2021
Authors
Monteiro, A; Menezes, R; Silva, ME;
Publication
TEST
Abstract
Real time series sometimes exhibit various types of "irregularities": missing observations, observations collected not regularly over time for practical reasons, observation times driven by the series itself, or outlying observations. However, the vast majority of methods of time series analysis are designed for regular time series only. A particular case of irregularly spaced time series is that in which the sampling procedure over time depends also on the observed values. In such situations, there is stochastic dependence between the process being modelled and the times of the observations. In this work, we propose a model in which the sampling design depends on all past history of the observed processes. Taking into account the natural temporal order underlying available data represented by a time series, then a modelling approach based on evolutionary processes seems a natural choice. We consider maximum likelihood estimation of the model parameters. Numerical studies with simulated and real data sets are performed to illustrate the benefits of this model-based approach.
2021
Authors
Puindi, AC; Silva, ME;
Publication
JOURNAL OF APPLIED STATISTICS
Abstract
This work presents a framework of dynamic structural models with covariates for short-term forecasting of time series with complex seasonal patterns. The framework is based on the multiple sources of randomness formulation. A noise model is formulated to allow the incorporation of randomness into the seasonal component and to propagate this same randomness in the coefficients of the variant trigonometric terms over time. A unique, recursive and systematic computational procedure based on the maximum likelihood estimation under the hypothesis of Gaussian errors is introduced. The referred procedure combines the Kalman filter with recursive adjustment of the covariance matrices and the selection method of harmonics number in the trigonometric terms. A key feature of this method is that it allows estimating not only the states of the system but also allows obtaining the standard errors of the estimated parameters and the prediction intervals. In addition, this work also presents a non-parametric bootstrap approach to improve the forecasting method based on Kalman filter recursions. The proposed framework is empirically explored with two real time series.
2021
Authors
Munna, TA; Delhibabu, R;
Publication
INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2021
Abstract
Nowadays, due to the growing demand for interdisciplinary research and innovation, different scientific communities pay substantial attention to cross-domain collaboration. However, having only information retrieval technologies in hands might be not enough to find prospective collaborators due to the large volume of stored bibliographic records in scholarly databases and unawareness about emerging cross-disciplinary trends. To address this issue, the endorsement of the cross-disciplinary scientific alliances have been introduced as a new tool for scientific research and technological modernization. In this paper, we use a state-of-art knowledge representation technique named Knowledge Graphs (KGs) and demonstrate how clustering of learned KGs embeddings helps to build a cross-disciplinary co-author recommendation system. © 2021, Springer Nature Switzerland AG.
2021
Authors
Reyes, M; Abreu, PH; Cardoso, JS; Hajij, M; Zamzmi, G; Paul, R; Thakur, L;
Publication
iMIMIC/TDA4MedicalData@MICCAI
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.