Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by LIAAD

2021

Comparative Genomics of Xanthomonas euroxanthea and Xanthomonas arboricola pv. juglandis Strains Isolated from a Single Walnut Host Tree

Authors
Fernandes, C; Martins, L; Teixeira, M; Blom, J; Pothier, JE; Fonseca, NA; Tavares, F;

Publication
MICROORGANISMS

Abstract
The recent report of distinct Xanthomonas lineages of Xanthomonas arboricola pv. juglandis and Xanthomonas euroxanthea within the same walnut tree revealed that this consortium of walnut-associated Xanthomonas includes both pathogenic and nonpathogenic strains. As the implications of this co-colonization are still poorly understood, in order to unveil niche-specific adaptations, the genomes of three X. euroxanthea strains (CPBF 367, CPBF 424(T), and CPBF 426) and of an X. arboricola pv. juglandis strain (CPBF 427) isolated from a single walnut tree in Loures (Portugal) were sequenced with two different technologies, Illumina and Nanopore, to provide consistent single scaffold chromosomal sequences. General genomic features showed that CPBF 427 has a genome similar to other X. arboricola pv. juglandis strains, regarding its size, number, and content of CDSs, while X. euroxanthea strains show a reduction regarding these features comparatively to X. arboricola pv. juglandis strains. Whole genome comparisons revealed remarkable genomic differences between X. arboricola pv. juglandis and X. euroxanthea strains, which translates into different pathogenicity and virulence features, namely regarding type 3 secretion system and its effectors and other secretory systems, chemotaxis-related proteins, and extracellular enzymes. Altogether, the distinct genomic repertoire of X. euroxanthea may be particularly useful to address pathogenicity emergence and evolution in walnut-associated Xanthomonas.

2021

Complete Genome Sequence Obtained by Nanopore and Illumina Hybrid Assembly of Xanthomonas arboricola pv. juglandis CPBF 427, Isolated from Buds of a Walnut Tree

Authors
Teixeira, M; Fernandes, C; Chaves, C; Pinto, J; Tavares, F; Fonseca, NA;

Publication
MICROBIOLOGY RESOURCE ANNOUNCEMENTS

Abstract
We report the genome sequence of Xanthomonas arboricola pv. juglandis strain CPBF 427, which was isolated from early-season buds of a diseased walnut tree, suggesting overwinter potential. This study provides a consistent genomic reference for this pathovar and may contribute to addressing the overwinter survival of these walnut pathogens.

2021

Evaluating the impact of sampling strategies and bioinformatics on ethanol-based DNA metabarcoding

Authors
Martins, FM; Fonseca, NA; Egeter, B; Pinto, J; Assunção, T; Chaves, C; Sousa, P; Jesus, J; Beja, P;

Publication
ARPHA Conference Abstracts

Abstract
Recent developments on ethanol-based DNA (etDNA) metabarcoding have shown that it is possible to extract meaningful information about macroinvertebrate community diversity and composition from the ethanol used to preserve bulk samples. The major advantages of this molecular approach are the reduced processing time and costs, and the possibility to keep specimens intact for other experiments. Yet, organisms with highly sclerotised exoskeleton or that are rare in the sample have been found to release a lower amount of DNA into solution and tend to be consistently missed by etDNA metabarcoding, thereby compromising the viability of the method. Few studies have shown that the first steps of the metabarcoding workflow are crucial for the good performance of etDNA-based assays, such as the decision on storage time before sampling and the ethanol phase to be analysed, the inclusion of pre-treatment strategies (i.e., freezing), and the choice of the DNA extraction protocol. In this study, we aimed to evaluate the combined effect of various technical choices on the performance of etDNA metabarcoding, considering factors such as sample volume, ethanol phase of sorted and unsorted samples, pre-capture treatments (evaporation vs filtration) and bioinformatic pipelines. Through the application of decision-tree models, our preliminary data revealed that the increase of volume (by itself) is enough to improve PCR amplification yields and proportion of families matching the morphological identifications, with great impact on the detection of hard-bodied and cased taxa. Also, no major differences among phases with or without a sorting step nor among bioinformatic pipelines were detected, particularly at higher volumes. Our results suggest that the higher performance (with lower observed variation) in taxonomic detection at higher volumes is likely a consequence of a higher availability of longer fragments of DNA in solution. This study highlights the importance of understanding the impact of technical choices to improve the efficiency of a DNA-based method, and reinstates etDNA metabarcoding as a potential method in the context of biomonitoring.

2021

DNA Barcoding of Portuguese Lacewings (Neuroptera) and Snakeflies (Raphidioptera) (Insecta, Neuropterida)

Authors
Oliveira, D; Chaves, C; Pinto, J; Pauperio, J; Fonseca, N; Beja, P; Ferreira, S;

Publication
ZOOKEYS

Abstract
The orders Neuroptera and Raphidioptera include the species of insects known as lacewings and snake flies, respectively. In Portugal, these groups account for over 100 species, some of which are very difficult to identify by morphological analysis. This work is the first to sample and DNA sequence lacewings and snakeflies of Portugal. A reference collection was built with captured specimens that were identified morphologically. DNA barcode sequences of 658 bp were obtained from 243 specimens of 54 species. The results showed that most species can be successfully identified through DNA barcoding, with the exception of seven species of Chrysopidae (Neuroptera). Additionally, the first published distribution data are presented for Portugal for the neuropterans Gymnocnemia variegata (Schneider, 1845) and Myrmecaelurus (Myrmecaelurus) trigrammus (Pallas, 1771).

2021

Selection underlies phenotypic divergence in the insular Azores woodpigeon

Authors
Andrade, P; Cataldo, D; Fontaine, R; Rodrigues, TM; Queiros, J; Neves, V; Fonseca, A; Carneiro, M; Goncalves, D;

Publication
ZOOLOGICA SCRIPTA

Abstract
The study of phenotypic evolution in island birds following colonization is a classic topic in island biogeography. However, few studies explicitly test for the role of selection in shaping trait evolution in these taxa. Here, we studied the Azores woodpigeon (Columba palumbus azorica) to investigate differences between island and mainland populations, between females and males, and interactions between geographical origin and sex, by using spectrophotometry to quantify plumage colour and linear measurements to examine external and skeletal morphology. We further tested if selection explains the observed patterns by comparing phenotypic differentiation to genome-wide neutral differentiation. Our findings are consistent with several predictions of morphological evolution in island birds, namely differences in bill, flight and leg morphology and coloration differences between island and mainland birds. Interestingly, some plumage and morphological traits that differ between females and males respond differently according to geographical origin. Sexual dimorphism in colour saturation is more pronounced in the mainland, but this is driven by selection on female plumage coloration. Differences in flight morphology between females and males are also more pronounced in the mainland, possibly to accommodate contrasting pressures between migration and flight displays. Overall, our results suggest that phenotypic differentiation between mainland and island populations leading to divergent sexual dimorphism patterns can arise from selection acting on both females and males on traits that are likely under the influence of natural and sexual selection.

2021

CMIID: A comprehensive medical information identifier for clinical search harmonization in Data Safe Havens

Authors
Domingues, MAP; Camacho, R; Rodrigues, PP;

Publication
JOURNAL OF BIOMEDICAL INFORMATICS

Abstract
Over the last decades clinical research has been driven by informatics changes nourished by distinct research endeavors. Inherent to this evolution, several issues have been the focus of a variety of studies: multi-location patient data access, interoperability between terminological and classification systems and clinical practice and records harmonization. Having these problems in mind, the Data Safe Haven paradigm emerged to promote a newborn architecture, better reasoning and safe and easy access to distinct Clinical Data Repositories. This study aim is to present a novel solution for clinical search harmonization within a safe environment, making use of a hybrid coding taxonomy that enables researchers to collect information from multiple repositories based on a clinical domain query definition. Results show that is possible to query multiple repositories using a single query definition based on clinical domains and the capabilities of the Unified Medical Language System, although it leads to deterioration of the framework response times. Participants of a Focus Group and a System Usability Scale questionnaire rated the framework with a median value of 72.5, indicating the hybrid coding taxonomy could be enriched with additional metadata to further improve the refinement of the results and enable the possibility of using this system as data quality tagging mechanism.

  • 103
  • 467