Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by HASLab

2025

Social Compliance with NPIs, Mobility Patterns, and Reproduction Number: Lessons from COVID-19 in Europe

Authors
Baccega, D; Aguilar, J; Baquero, C; Fernández Anta, A; Ramirez, JM;

Publication

Abstract
AbstractNon-pharmaceutical interventions (NPIs), including measures such as lockdowns, travel limitations, and social distancing mandates, play a critical role in shaping human mobility, which subsequently influences the spread of infectious diseases. Using COVID-19 as a case study, this research examines the relationship between restrictions, mobility patterns, and the disease’s effective reproduction number (Rt) across 13 European countries. Employing clustering techniques, we uncover distinct national patterns, highlighting differences in social compliance between Northern and Southern Europe. While restrictions strongly correlate with mobility reductions, the relationship between mobility and Rtis more nuanced, driven primarily by the nature of social interactions rather than mere compliance. Additionally, employing XGBoost regression models, we demonstrate that missing mobility data can be accurately inferred from restrictions, and missing infection rates can be predicted from mobility data. These findings provide valuable insights for tailoring public health strategies in future crisis and refining analytical approaches.

2025

Leakage-Free Probabilistic Jasmin Programs

Authors
Almeida, JB; Firsov, D; Oliveira, T; Unruh, D;

Publication
Proceedings of the 14th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2025, Denver, CO, USA, January 20-21, 2025

Abstract

2025

Specification of paraconsistent transition systems, revisited

Authors
Cunha, J; Madeira, A; Barbosa, LS;

Publication
SCIENCE OF COMPUTER PROGRAMMING

Abstract
The need for more flexible and robust models to reason about systems in the presence of conflicting information is becoming more and more relevant in different contexts. This has prompted the introduction of paraconsistent transition systems, where transitions are characterized by two pairs of weights: one representing the evidence that the transition effectively occurs and the other its absence. Such a pair of weights can express scenarios of vagueness and inconsistency. . This paper establishes a foundation for a compositional and structured specification approach of paraconsistent transition systems, framed as paraconsistent institution. . The proposed methodology follows the stepwise implementation process outlined by Sannella and Tarlecki.

2025

Approaches to Conflict-free Replicated Data Types

Authors
Almeida, PS;

Publication
ACM COMPUTING SURVEYS

Abstract
Conflict-free Replicated Data Types (CRDTs) allow optimistic replication in a principled way. Different replicas can proceed independently, being available even under network partitions and always converging deterministically: Replicas that have received the same updates will have equivalent state, even if received in different orders. After a historical tour of the evolution from sequential data types to CRDTs, we present in detail the two main approaches to CRDTs, operation-based and state-based, including two important variations, the pure operation-based and the delta-state based. Intended for prospective CRDT researchers and designers, this article provides solid coverage of the essential concepts, clarifying some misconceptions that frequently occur, but also presents some novel insights gained from considerable experience in designing both specific CRDTs and approaches to CRDTs.

2025

Alloy Repair Hint Generation Based on Historical Data

Authors
Barros, A; Neto, H; Cunha, A; Macedo, N; Paiva, ACR;

Publication
FORMAL METHODS, PT II, FM 2024

Abstract
Platforms to support novices learning to program are often accompanied by automated next-step hints that guide them towards correct solutions. Many of those approaches are data-driven, building on historical data to generate higher quality hints. Formal specifications are increasingly relevant in software engineering activities, but very little support exists to help novices while learning. Alloy is a formal specification language often used in courses on formal software development methods, and a platform-Alloy4Fun-has been proposed to support autonomous learning. While non-data-driven specification repair techniques have been proposed for Alloy that could be leveraged to generate next-step hints, no data-driven hint generation approach has been proposed so far. This paper presents the first data-driven hint generation technique for Alloy and its implementation as an extension to Alloy4Fun, being based on the data collected by that platform. This historical data is processed into graphs that capture past students' progress while solving specification challenges. Hint generation can be customized with policies that take into consideration diverse factors, such as the popularity of paths in those graphs successfully traversed by previous students. Our evaluation shows that the performance of this new technique is competitive with non-data-driven repair techniques. To assess the quality of the hints, and help select the most appropriate hint generation policy, we conducted a survey with experienced Alloy instructors.

2025

Promoting sustainable and personalized travel behaviors while preserving data privacy

Authors
Brito C.; Pina N.; Esteves T.; Vitorino R.; Cunha I.; Paulo J.;

Publication
Transportation Engineering

Abstract
Cities worldwide have agreed on ambitious goals regarding carbon neutrality. To do so, policymakers seek ways to foster smarter and cleaner transportation solutions. However, citizens lack awareness of their carbon footprint and of greener mobility alternatives such as public transports. With this, three main challenges emerge: (i) increase users’ awareness regarding their carbon footprint, (ii) provide personalized recommendations and incentives for using sustainable transportation alternatives and, (iii) guarantee that any personal data collected from the user is kept private. This paper addresses these challenges by proposing a new methodology. Created under the FranchetAI project, the methodology combines federated Artificial Intelligence (AI) and Greenhouse Gas (GHG) estimation models to calculate the carbon footprint of users when choosing different transportation modes (e.g., foot, car, bus). Through a mobile application that keeps the privacy of users’ personal information, the project aims at providing detailed reports to inform citizens about their impact on the environment, and an incentive program to promote the usage of more sustainable mobility alternatives.

  • 1
  • 256