2025
Authors
Cunha, J; Madeira, A; Barbosa, LS;
Publication
SCIENCE OF COMPUTER PROGRAMMING
Abstract
The need for more flexible and robust models to reason about systems in the presence of conflicting information is becoming more and more relevant in different contexts. This has prompted the introduction of paraconsistent transition systems, where transitions are characterized by two pairs of weights: one representing the evidence that the transition effectively occurs and the other its absence. Such a pair of weights can express scenarios of vagueness and inconsistency. . This paper establishes a foundation for a compositional and structured specification approach of paraconsistent transition systems, framed as paraconsistent institution. . The proposed methodology follows the stepwise implementation process outlined by Sannella and Tarlecki.
2025
Authors
Almeida, PS;
Publication
ACM COMPUTING SURVEYS
Abstract
Conflict-free Replicated Data Types (CRDTs) allow optimistic replication in a principled way. Different replicas can proceed independently, being available even under network partitions and always converging deterministically: Replicas that have received the same updates will have equivalent state, even if received in different orders. After a historical tour of the evolution from sequential data types to CRDTs, we present in detail the two main approaches to CRDTs, operation-based and state-based, including two important variations, the pure operation-based and the delta-state based. Intended for prospective CRDT researchers and designers, this article provides solid coverage of the essential concepts, clarifying some misconceptions that frequently occur, but also presents some novel insights gained from considerable experience in designing both specific CRDTs and approaches to CRDTs.
2025
Authors
Kassam, Z; Almeida, PS; Shoker, A;
Publication
IEEE Access
Abstract
TCP is the default transport protocol of choice, namely for message-oriented middleware protocols (e.g., ZMTP, AMQP, MQTT) or distributed language runtimes (e.g., distributed Erlang), where exactly-once (EO) messaging is paramount. However, EO is only guaranteed within the TCP session, since reality shows that TCP connections can fail under many circumstances. Ensuring EO delivery ends up at the middleware layer, at the cost of higher complexity and lack of obliviouness - due to the use of permanent per-peer state. Moreover, using TCP at scale in highly concurrent systems leads to the need for TCP connection multiplexing, and possibly drastic performance loss due to head-of-line blocking. This paper introduces Exon, an oblivious exactly-once messaging protocol, and a corresponding lightweight library implementation over UDP. Exon uses a novel strategy of a per-message four-way protocol to ensure oblivious exactly-once messaging, with on-demand protocol-level "soft half-connections", established when needed and safely discarded. Exon achieves simultaneously: correctness with no timing assumptions, obliviousness, and performance through merging and pipelining basic protocol messages. Exon also employs a reliable delegation technique to handover the sending responsibility to a mediating node, without violating EO, when the sender the receiver are directly unreachable to each other and even if the message had already been delivered. The empirical evaluation of Exon demonstrates significant improvements over TCP in throughput and latency under packet loss, while maintaining a negligible overhead in healthy networks. © 2013 IEEE.
2025
Authors
Barros, A; Neto, H; Cunha, A; Macedo, N; Paiva, ACR;
Publication
FORMAL METHODS, PT II, FM 2024
Abstract
Platforms to support novices learning to program are often accompanied by automated next-step hints that guide them towards correct solutions. Many of those approaches are data-driven, building on historical data to generate higher quality hints. Formal specifications are increasingly relevant in software engineering activities, but very little support exists to help novices while learning. Alloy is a formal specification language often used in courses on formal software development methods, and a platform-Alloy4Fun-has been proposed to support autonomous learning. While non-data-driven specification repair techniques have been proposed for Alloy that could be leveraged to generate next-step hints, no data-driven hint generation approach has been proposed so far. This paper presents the first data-driven hint generation technique for Alloy and its implementation as an extension to Alloy4Fun, being based on the data collected by that platform. This historical data is processed into graphs that capture past students' progress while solving specification challenges. Hint generation can be customized with policies that take into consideration diverse factors, such as the popularity of paths in those graphs successfully traversed by previous students. Our evaluation shows that the performance of this new technique is competitive with non-data-driven repair techniques. To assess the quality of the hints, and help select the most appropriate hint generation policy, we conducted a survey with experienced Alloy instructors.
2025
Authors
Brito C.; Pina N.; Esteves T.; Vitorino R.; Cunha I.; Paulo J.;
Publication
Transportation Engineering
Abstract
Cities worldwide have agreed on ambitious goals regarding carbon neutrality. To do so, policymakers seek ways to foster smarter and cleaner transportation solutions. However, citizens lack awareness of their carbon footprint and of greener mobility alternatives such as public transports. With this, three main challenges emerge: (i) increase users’ awareness regarding their carbon footprint, (ii) provide personalized recommendations and incentives for using sustainable transportation alternatives and, (iii) guarantee that any personal data collected from the user is kept private. This paper addresses these challenges by proposing a new methodology. Created under the FranchetAI project, the methodology combines federated Artificial Intelligence (AI) and Greenhouse Gas (GHG) estimation models to calculate the carbon footprint of users when choosing different transportation modes (e.g., foot, car, bus). Through a mobile application that keeps the privacy of users’ personal information, the project aims at providing detailed reports to inform citizens about their impact on the environment, and an incentive program to promote the usage of more sustainable mobility alternatives.
2025
Authors
Costa, L; Barbosa, S; Cunha, J;
Publication
CoRR
Abstract
In recent years, the research community, but also the general public, has raised serious questions about the reproducibility and replicability of scientific work. Since many studies include some kind of computational work, these issues are also a technological challenge, not only in computer science, but also in most research domains. Computational replicability and reproducibility are not easy to achieve due to the variety of computational environments that can be used. Indeed, it is challenging to recreate the same environment via the same frameworks, code, programming languages, dependencies, and so on. We propose a framework, known as SciRep, that supports the configuration, execution, and packaging of computational experiments by defining their code, data, programming languages, dependencies, databases, and commands to be executed. After the initial configuration, the experiments can be executed any number of times, always producing exactly the same results. Our approach allows the creation of a reproducibility package for experiments from multiple scientific fields, from medicine to computer science, which can be re-executed on any computer. The produced package acts as a capsule, holding absolutely everything necessary to re-execute the experiment. To evaluate our framework, we compare it with three state-of-the-art tools and use it to reproduce 18 experiments extracted from published scientific articles. With our approach, we were able to execute 16 (89%) of those experiments, while the others reached only 61%, thus showing that our approach is effective. Moreover, all the experiments that were executed produced the results presented in the original publication. Thus, SciRep was able to reproduce 100% of the experiments it could run. © 2025 The Authors
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.