2025
Authors
Cunha, LF; Guimarães, N; Mendes, A; Campos, R; Jorge, A;
Publication
Advances in Information Retrieval - 47th European Conference on Information Retrieval, ECIR 2025, Lucca, Italy, April 6-10, 2025, Proceedings, Part V
Abstract
In healthcare, diagnoses usually rely on physician expertise. However, complex cases may benefit from consulting similar past clinical reports cases. In this paper, we present MedLink (http://medlink.inesctec.pt), a tool that given a free-text medical report, retrieves and ranks relevant clinical case reports published in health conferences and journals, aiming to support clinical decision-making, particularly in challenging or complex diagnoses. To this regard, we trained two BERT models on the sentence similarity task: a bi-encoder for retrieval and a cross-encoder for reranking. To evaluate our approach, we used 10 medical reports and asked a physician to rank the top 10 most relevant published case reports for each one. Our results show that MedLink’s ranking model achieved NDCG@10 of 0.747. Our demo also includes the visualization of clinical entities (using a NER model) and the production of a textual explanation (using a LLM) to ease comparison and contrasting between reports. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2025
Authors
Carreira, C; Saavedra, N; Mendes, A; Ferreira, JF;
Publication
CoRR
Abstract
2025
Authors
Carreira, C; Ferreira, JF; Mendes, A; Christin, N;
Publication
CoRR
Abstract
2025
Authors
Carreira, C; Mendes, A; Ferreira, JF; Christin, N;
Publication
CoRR
Abstract
2025
Authors
Saavedra, N; Ferreira, JF; Mendes, A;
Publication
Proceedings of the 34th ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA Companion 2025, Clarion Hotel Trondheim, Trondheim, Norway, June 25-28, 2025
Abstract
2025
Authors
Wu, V; Mendes, A; Abreu, A;
Publication
CoRR
Abstract
Debugging and repairing faults when programs fail to formally verify can be complex and time-consuming. Automated Program Repair (APR) can ease this burden by automatically identifying and fixing faults. However, traditional APR techniques often rely on test suites for validation, but these may not capture all possible scenarios. In contrast, formal specifications provide strong correctness criteria, enabling more effective automated repair. In this paper, we present an APR tool for Dafny, a verification-aware programming language that uses formal specifications — including pre-conditions, post-conditions, and invariants — as oracles for fault localization and repair. Assuming the correctness of the specifications and focusing on arithmetic bugs, we localize faults through a series of steps, which include using Hoare logic to determine the state of each statement within the program, and applying Large Language Models (LLMs) to synthesize candidate fixes. The models considered are GPT-4o mini, Llama 3, Mistral 7B, and Llemma 7B. We evaluate our approach using DafnyBench, a benchmark of real-world Dafny programs. Our tool achieves 89.7% fault localization success rate and GPT-4o mini yields the highest repair success rate of 74.18%. These results highlight the potential of combining formal reasoning with LLM-based program synthesis for automated program repair. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.