Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by HASLab

2018

Indifferentiable Authenticated Encryption

Authors
Barbosa, M; Farshim, P;

Publication
ADVANCES IN CRYPTOLOGY - CRYPTO 2018, PT I

Abstract
We study Authenticated Encryption with Associated Data (AEAD) from the viewpoint of composition in arbitrary (single-stage) environments. We use the indifferentiability framework to formalize the intuition that a "good" AEAD scheme should have random ciphertexts subject to decryptability. Within this framework, we can then apply the indifferentiability composition theorem to show that such schemes offer extra safeguards wherever the relevant security properties are not known, or cannot be predicted in advance, as in general-purpose crypto libraries and standards. We show, on the negative side, that generic composition (in many of its configurations) and well-known classical and recent schemes fail to achieve indifferentiability. On the positive side, we give a provably indifferentiable Feistel-based construction, which reduces the round complexity from at least 6, needed for blockciphers, to only 3 for encryption. This result is not too far off the theoretical optimum as we give a lower bound that rules out the indifferentiability of any construction with less than 2 rounds.

2018

Indifferentiable Authenticated Encryption

Authors
Barbosa, M; Farshim, P;

Publication
IACR Cryptology ePrint Archive

Abstract

2017

SafeFS: a modular architecture for secure user-space file systems: one FUSE to rule them all

Authors
Pontes, Rogerio; Burihabwa, Dorian; Maia, Francisco; Paulo, Joao; Schiavoni, Valerio; Felber, Pascal; Mercier, Hugues; Oliveira, Rui;

Publication
Proceedings of the 10th ACM International Systems and Storage Conference, SYSTOR 2017, Haifa, Israel, May 22-24, 2017

Abstract
The exponential growth of data produced, the ever faster and ubiquitous connectivity, and the collaborative processing tools lead to a clear shift of data stores from local servers to the cloud. This migration occurring across different application domains and types of users|individual or corporate|raises two immediate challenges. First, outsourcing data introduces security risks, hence protection mechanisms must be put in place to provide guarantees such as privacy, confidentiality and integrity. Second, there is no \one-size-fits-all" solution that would provide the right level of safety or performance for all applications and users, and it is therefore necessary to provide mechanisms that can be tailored to the various deployment scenarios. In this paper, we address both challenges by introducing SafeFS, a modular architecture based on software-defined storage principles featuring stackable building blocks that can be combined to construct a secure distributed file system. SafeFS allows users to specialize their data store to their specific needs by choosing the combination of blocks that provide the best safety and performance tradeoffs. The file system is implemented in user space using FUSE and can access remote data stores. The provided building blocks notably include mechanisms based on encryption, replication, and coding. We implemented SafeFS and performed indepth evaluation across a range of workloads. Results reveal that while each layer has a cost, one can build safe yet efficient storage architectures. Furthermore, the different combinations of blocks sometimes yield surprising tradeoffs. © 2017 ACM.

2017

DDFlasks: Deduplicated Very Large Scale Data Store

Authors
Maia, F; Paulo, J; Coelho, F; Neves, F; Pereira, J; Oliveira, R;

Publication
Distributed Applications and Interoperable Systems - 17th IFIP WG 6.1 International Conference, DAIS 2017, Held as Part of the 12th International Federated Conference on Distributed Computing Techniques, DisCoTec 2017, Neuchâtel, Switzerland, June 19-22, 2017, Proceedings

Abstract
With the increasing number of connected devices, it becomes essential to find novel data management solutions that can leverage their computational and storage capabilities. However, developing very large scale data management systems requires tackling a number of interesting distributed systems challenges, namely continuous failures and high levels of node churn. In this context, epidemic-based protocols proved suitable and effective and have been successfully used to build DataFlasks, an epidemic data store for massive scale systems. Ensuring resiliency in this data store comes with a significant cost in storage resources and network bandwidth consumption. Deduplication has proven to be an efficient technique to reduce both costs but, applying it to a large-scale distributed storage system is not a trivial task. In fact, achieving significant space-savings without compromising the resiliency and decentralized design of these storage systems is a relevant research challenge. In this paper, we extend DataFlasks with deduplication to design DDFlasks. This system is evaluated in a real world scenario using Wikipedia snapshots, and the results are twofold. We show that deduplication is able to decrease storage consumption up to 63% and decrease network bandwidth consumption by up to 20%, while maintaining a fullydecentralized and resilient design. © IFIP International Federation for Information Processing 2017.

2017

Similarity Aware Shuffling for the Distributed Execution of SQL Window Functions

Authors
Coelho, F; Matos, M; Pereira, J; Oliveira, R;

Publication
Distributed Applications and Interoperable Systems - 17th IFIP WG 6.1 International Conference, DAIS 2017, Held as Part of the 12th International Federated Conference on Distributed Computing Techniques, DisCoTec 2017, Neuchâtel, Switzerland, June 19-22, 2017, Proceedings

Abstract
Window functions are extremely useful and have become increasingly popular, allowing ranking, cumulative sums and other analytic aggregations to be computed over a highly flexible and configurable sliding window. This powerful expressiveness comes naturally at the expense of heavy computational requirements which, so far, have been addressed through optimizations around centralized approaches by works both from the industry and academia. Distribution and parallelization has the potential to improve performance, but introduces several challenges associated with data distribution that may harm data locality. In this paper, we show how data similarity can be employed across partitions during the distributed execution of these operators to improve data co-locality between instances of a Distributed Query Engine and the associated data storage nodes. Our contribution can attain network gains in the average of 3 times and it is expected to scale as the number of instances increase. In the scenario with 8 nodes, we were to able attain bandwidth and time savings of 7.3 times and 2.61 times respectively. © IFIP International Federation for Information Processing 2017.

2017

Performance trade-offs on a secure multi-party relational database

Authors
Pontes, R; Pinto, M; Barbosa, M; Vilaça, R; Matos, M; Oliveira, R;

Publication
Proceedings of the Symposium on Applied Computing, SAC 2017, Marrakech, Morocco, April 3-7, 2017

Abstract
The privacy of information is an increasing concern of software applications users. This concern was caused by attacks to cloud services over the last few years, that have leaked confidential information such as passwords, emails and even private pictures. Once the information is leaked, the users and software applications are powerless to contain the spread of information and its misuse. With databases as a central component of applications that store almost all of their data, they are one of the most common targets of attacks. However, typical deployments of databases do not leverage security mechanisms to stop attacks and do not apply cryptographic schemes to protect data. This issue has been tackled by multiple secure databases that provide trade-offs between security, query capabilities and performance. Despite providing stronger security guarantees, the proposed solutions still entrust their data to a single entity that can be corrupted or hacked. Secret sharing can solve this problem by dividing data in multiple secrets and storing each secret at a different location. The division is done in such a way that if one location is hacked, no information can be leaked. Depending on the protocols used to divide data, functions can be computed over this data through secure protocols that do not disclose information or actually know which values are being calculated. We propose a SQL database prototype capable of offering a trade-off between security and query latency by using a different secure protocol. An evaluation of the protocols is also performed, showing that our most relaxed protocol has an improvement of 5% on the query latency time over the original protocol. © 2017 ACM.

  • 102
  • 262