2024
Authors
Silva, HBGE; Santos, RMN; Ricardo, M;
Publication
INTERNET POLICY REVIEW
Abstract
The implementation of traffic differentiation measures by internet service providers (ISPs) has raised concerns regarding net neutrality, potentially leading to discriminatory practices that challenge existing regulatory frameworks. The complexity of this issue intensifies with the advent of 5G networks as they dynamically assemble elements of the physical infrastructure to create logically segregated domains customised to accommodate usage scenarios with specific requirements, resulting in the categorisation of users, applications, and services into distinct groups which possess the capacity to disrupt the non-discriminatory treatment of data flows. Within this context, a pivotal question arises: how can regulatory authorities effectively evaluate traffic differentiation in 5G networks? In response, this paper proposes an innovative application of the standardised network data analytics function (NWDAF) to facilitate the assessment of internet traffic differentiation. We introduce this novel concept and demonstrate its implementation through a proof -of -concept prototype. By leveraging the NWDAF, regulators may obtain direct and automatic access to performance metrics of 5G networks, enabling the analysis of the traffic management mechanisms employed by ISPs.
2024
Authors
Teixeira, FB; Ricardo, M; Coelho, A; Oliveira, HP; Viana, P; Paulino, N; Fontes, H; Marques, P; Campos, R; Pessoa, LM;
Publication
2024 JOINT EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS & 6G SUMMIT, EUCNC/6G SUMMIT 2024
Abstract
Telecommunications and computer vision have evolved separately so far. Yet, with the shift to sub-terahertz (sub-THz) and terahertz (THz) radio communications, there is an opportunity to explore computer vision technologies together with radio communications, considering the dependency of both technologies on Line of Sight. The combination of radio sensing and computer vision can address challenges such as obstructions and poor lighting. Also, machine learning algorithms, capable of processing multimodal data, play a crucial role in deriving insights from raw and low-level sensing data, offering a new level of abstraction that can enhance various applications and use cases such as beamforming and terminal handovers. This paper introduces CONVERGE, a pioneering vision-radio paradigm that bridges this gap by leveraging Integrated Sensing and Communication (ISAC) to facilitate a dual View-to-Communicate, Communicate-to-View approach. CONVERGE offers tools that merge wireless communications and computer vision, establishing a novel Research Infrastructure (RI) that will be open to the scientific community and capable of providing open datasets. This new infrastructure will support future research in 6G and beyond concerning multiple verticals, such as telecommunications, automotive, manufacturing, media, and health.
2024
Authors
Pereira, B; Cunha, B; Viana, P; Lopes, M; Melo, ASC; Sousa, ASP;
Publication
SENSORS
Abstract
Shoulder rehabilitation is a process that requires physical therapy sessions to recover the mobility of the affected limbs. However, these sessions are often limited by the availability and cost of specialized technicians, as well as the patient's travel to the session locations. This paper presents a novel smartphone-based approach using a pose estimation algorithm to evaluate the quality of the movements and provide feedback, allowing patients to perform autonomous recovery sessions. This paper reviews the state of the art in wearable devices and camera-based systems for human body detection and rehabilitation support and describes the system developed, which uses MediaPipe to extract the coordinates of 33 key points on the patient's body and compares them with reference videos made by professional physiotherapists using cosine similarity and dynamic time warping. This paper also presents a clinical study that uses QTM, an optoelectronic system for motion capture, to validate the methods used by the smartphone application. The results show that there are statistically significant differences between the three methods for different exercises, highlighting the importance of selecting an appropriate method for specific exercises. This paper discusses the implications and limitations of the findings and suggests directions for future research.
2024
Authors
Vilça, L; Viana, P; Carvalho, P; Andrade, MT;
Publication
IEEE ACCESS
Abstract
It is well known that the performance of Machine Learning techniques, notably when applied to Computer Vision (CV), depends heavily on the amount and quality of the training data set. However, large data sets lead to time-consuming training loops and, in many situations, are difficult or even impossible to create. Therefore, there is a need for solutions to reduce their size while ensuring good levels of performance, i.e., solutions that obtain the best tradeoff between the amount/quality of training data and the model's performance. This paper proposes a dataset reduction approach for training data used in Deep Learning methods in Facial Recognition (FR) problems. We focus on maximizing the variability of representations for each subject (person) in the training data, thus favoring quality instead of size. The main research questions are: 1) Which facial features better discriminate different identities? 2) Will it be possible to significantly reduce the training time without compromising performance? 3) Should we favor quality over quantity for very large datasets in FR? This analysis uses a pipeline to discriminate a set of features suitable for capturing the diversity and a cluster-based sampling to select the best images for each training subject, i.e., person. Results were obtained using VGGFace2 and Labeled Faces in the Wild (for benchmarking) and show that, with the proposed approach, a data reduction is possible while ensuring similar levels of accuracy.
2024
Authors
Sulun, S; Viana, P; Davies, MEP;
Publication
EXPERT SYSTEMS WITH APPLICATIONS
Abstract
We introduce a novel method for movie genre classification, capitalizing on a diverse set of readily accessible pretrained models. These models extract high-level features related to visual scenery, objects, characters, text, speech, music, and audio effects. To intelligently fuse these pretrained features, we train small classifier models with low time and memory requirements. Employing the transformer model, our approach utilizes all video and audio frames of movie trailers without performing any temporal pooling, efficiently exploiting the correspondence between all elements, as opposed to the fixed and low number of frames typically used by traditional methods. Our approach fuses features originating from different tasks and modalities, with different dimensionalities, different temporal lengths, and complex dependencies as opposed to current approaches. Our method outperforms state-of-the-art movie genre classification models in terms of precision, recall, and mean average precision (mAP). To foster future research, we make the pretrained features for the entire MovieNet dataset, along with our genre classification code and the trained models, publicly available.
2024
Authors
Barros, N; Sobral, P; Moreira, RS; Vargas, J; Fonseca, A; Abreu, I; Guerreiro, MS;
Publication
SENSORS
Abstract
Indoor air quality (IAQ) problems in school environments are very common and have significant impacts on students' performance, development and health. Indoor air conditions depend on the adopted ventilation practices, which in Mediterranean countries are essentially based on natural ventilation controlled through manual window opening. Citizen science projects directed to school communities are effective strategies to promote awareness and knowledge acquirement on IAQ and adequate ventilation management. Our multidisciplinary research team has developed a framework-SchoolAIR-based on low-cost sensors and a scalable IoT system architecture to support the improvement of IAQ in schools. The SchoolAIR framework is based on do-it-yourself sensors that continuously monitor air temperature, relative humidity, concentrations of carbon dioxide and particulate matter in school environments. The framework was tested in the classrooms of University Fernando Pessoa, and its deployment and proof of concept took place in a high school in the north of Portugal. The results obtained reveal that CO2 concentrations frequently exceed reference values during classes, and that higher concentrations of particulate matter in the outdoor air affect IAQ. These results highlight the importance of real-time monitoring of IAQ and outdoor air pollution levels to support decision-making in ventilation management and assure adequate IAQ. The proposed approach encourages the transfer of scientific knowledge from universities to society in a dynamic and active process of social responsibility based on a citizen science approach, promoting scientific literacy of the younger generation and enhancing healthier, resilient and sustainable indoor environments.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.