Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
Publications

Publications by CTM

2019

A Comprehensive Study On Enterprise Wi-Fi Access Points Power Consumption

Authors
Silva, P; Almeida, NT; Campos, R;

Publication
IEEE Access

Abstract

2019

Energy Consumption Management for Dense Wi-Fi Networks

Authors
Silva, P; Almeida, NT; Campos, R;

Publication
IFIP Wireless Days

Abstract
Wi-Fi networks lack energy consumption management mechanisms. In particular, during nighttime periods, the energy waste may be significant, since all Access Points (APs) are kept switched on even though there is minimum or null traffic demand. The fact that more than 80% of all wireless traffic is originated or terminated indoor, and served by Wi-Fi, has led the scientific community to look into energy saving mechanisms for Wi-Fi networks. State of the art solutions address the problem by switching APs on and off based on manually inserted schedules or by analyzing real-time traffic demand. The first are vendor specific; the second may induce frequent station (STA) handoffs, which has an impact on network performance. The lack of implementability of solutions is also a shortcoming in most works.We propose an algorithm, named Energy Consumption Management Algorithm (ECMA), that learns the daytime and nighttime periods of the Wi-Fi network. ECMA was designed having in mind its implementability over legacy Wi-Fi equipment. At daytime, the radio interfaces of the AP (2.4 GHz and 5 GHz) are switched on and off automatically, according to the traffic demand. At nighttime, clusters of APs, covering the same area, are formed, leaving one AP always switched on for basic coverage and the redundant APs swichted off to maximize energy savings, while avoiding coverage and performance hampering. Simulation results show energy savings of up to 50% are possible using the ECMA algorithm. © 2019 IEEE.

2019

Resonant tunneling diode photodetectors for optical communications

Authors
Watson, S; Zhang, WK; Tavares, J; Figueiredo, J; Cantu, H; Wang, J; Wasige, E; Salgado, H; Pessoa, L; Kelly, A;

Publication
Microwave and Optical Technology Letters

Abstract
Optical modulation characteristics of resonant tunneling diode photodetectors (RTD-PD) are investigated. Intensity modulated light excites the RTD-PDs to conduct data experiments. Simple and complex data patterns are used with results showing data rates up to 80 and 200 Mbit/s, respectively. This is the first demonstration of complex modulation using resonant tunneling diodes. © 2019 The Authors. Microwave and Optical Technology Letters published by Wiley Periodicals, Inc.

2019

An FPGA-Oriented Baseband Modulator Architecture for 4G/5G Communication Scenarios

Authors
Ferreira, ML; Ferreira, JC;

Publication
ELECTRONICS

Abstract
The next evolution in cellular communications will not only improve upon the performance of previous generations, but also represent an unparalleled expansion in the number of services and use cases. One of the foundations for this evolution is the design of highly flexible, versatile, and resource-/power-efficient hardware components. This paper proposes and evaluates an FPGA-oriented baseband processing architecture suitable for communication scenarios such as non-contiguous carrier aggregation, centralized Cloud Radio Access Network (C-RAN) processing, and 4G/5G waveform coexistence. Our system is upgradeable, resource-efficient, cost-effective, and provides support for three 5G waveform candidates. Exploring Dynamic Partial Reconfiguration (DPR), the proposed architecture expands the design space exploration beyond the available hardware resources on the Zynq xc7z020 through hardware virtualization. Additionally, Dynamic Frequency Scaling (DFS) allows for run-time adjustment of processing throughput and reduces power consumption up to 88%. The resource overhead for DPR and DFS is residual, and the reconfiguration latency is two orders of magnitude below the control plane latency requirements proposed for 5G communications.

2019

Dynamic Partial Reconfiguration of Customized Single-Row Accelerators

Authors
Cardanha Paulino, NM; Ferreira, JC; Cardoso, JMP;

Publication
IEEE Trans. VLSI Syst.

Abstract

2019

Dynamic Partial Reconfiguration of Customized Single-Row Accelerators

Authors
Paulino, NMC; Ferreira, JC; Cardoso, JMP;

Publication
IEEE Transactions on Very Large Scale Integration (VLSI) Systems

Abstract

  • 1
  • 228