2022
Authors
Nogueira, AFR; Oliveira, HS; Machado, JJM; Tavares, JMRS;
Publication
SENSORS
Abstract
Many relevant sound events occur in urban scenarios, and robust classification models are required to identify abnormal and relevant events correctly. These models need to identify such events within valuable time, being effective and prompt. It is also essential to determine for how much time these events prevail. This article presents an extensive analysis developed to identify the best-performing model to successfully classify a broad set of sound events occurring in urban scenarios. Analysis and modelling of Transformer models were performed using available public datasets with different sets of sound classes. The Transformer models' performance was compared to the one achieved by the baseline model and end-to-end convolutional models. Furthermore, the benefits of using pre-training from image and sound domains and data augmentation techniques were identified. Additionally, complementary methods that have been used to improve the models' performance and good practices to obtain robust sound classification models were investigated. After an extensive evaluation, it was found that the most promising results were obtained by employing a Transformer model using a novel Adam optimizer with weight decay and transfer learning from the audio domain by reusing the weights from AudioSet, which led to an accuracy score of 89.8% for the UrbanSound8K dataset, 95.8% for the ESC-50 dataset, and 99% for the ESC-10 dataset, respectively.
2022
Authors
Nogueira, AFR; Oliveira, HS; Machado, JJM; Tavares, JMRS;
Publication
SENSORS
Abstract
Audio recognition can be used in smart cities for security, surveillance, manufacturing, autonomous vehicles, and noise mitigation, just to name a few. However, urban sounds are everyday audio events that occur daily, presenting unstructured characteristics containing different genres of noise and sounds unrelated to the sound event under study, making it a challenging problem. Therefore, the main objective of this literature review is to summarize the most recent works on this subject to understand the current approaches and identify their limitations. Based on the reviewed articles, it can be realized that Deep Learning (DL) architectures, attention mechanisms, data augmentation techniques, and pretraining are the most crucial factors to consider while creating an efficient sound classification model. The best-found results were obtained by Mushtaq and Su, in 2020, using a DenseNet-161 with pretrained weights from ImageNet, and NA-1 and NA-2 as augmentation techniques, which were of 97.98%, 98.52%, and 99.22% for UrbanSound8K, ESC-50, and ESC-10 datasets, respectively. Nonetheless, the use of these models in real-world scenarios has not been properly addressed, so their effectiveness is still questionable in such situations.
2022
Authors
Pinto, VH; Soares, IN; Ribeiro, F; Lima, J; Goncalves, J; Costa, P;
Publication
CONTROLO 2022
Abstract
Legged-wheeled locomotion systems are a particular case of robot types that can be characterized by an increase in the degrees of freedom. To increase safety and robustness in the performance of industrial robots, while reducing the risk of damage to the robot joints and injure to human operators, the use of non-rigid joints is growing in the literature and in the industry. Realistic simulators are tools capable of detecting rigid bodies interactions through physics engines. This paper presents the simulation model of a hybrid legged-wheeled robot, built in the SimTwo simulator. The proposed algorithms for path following control are detailed, along with the tests performed to them. These showed that the errors in linear paths are at most 1 cm. For circular paths, the maximum error is 3 cm.
2022
Authors
Cerqueira, T; Ribeiro, FM; Pinto, VH; Lima, J; Goncalves, G;
Publication
APPLIED SCIENCES-BASEL
Abstract
This article focuses on a sensorial glove prototype capable of acquiring hand motion and estimating its pose. The presented solution features twelve inertial measurement units (IMUs) to track hand orientation. The sensors are attached to a glove to decrease the project cost. The system also focuses on sensor fusion algorithms for the IMUs and further implementations, presenting the algebraic quaternion algorithm (AQUA), used because of its modularity and intuitive implementation. An adaptation of a human hand model is proposed, explaining its advantages and its limitations. Considering that the calibration is a very important process in gyroscope performance, the online and offline calibration data was analyzed, pointing out its challenges and improvements. To better visualize the model and sensors a simulation was conducted in Unity.
2022
Authors
Ribeiro, FM; Pinto, VH;
Publication
2022 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)
Abstract
Throughout this article the execution of the motion planning for a robotic manipulator by means of Reinforcement Learning methods is studied. Towards this, an implementation based on a Wire and loop game is used as an example case to be solved. The loop is controlled in a single plane as the endeffector of the manipulator. The modeling of the problem and the process of training the agent is detailed. This allowed for the verification of the capacity of a learning based method, having produced, under the considered abstractions, satisfying results by gaining the capability of completing the path imposed by the wire in 23 seconds.
2022
Authors
Ferreira Santos, D; Amorim, P; Martins, TS; Monteiro Soares, M; Rodrigues, PP;
Publication
JOURNAL OF MEDICAL INTERNET RESEARCH
Abstract
Background: American Academy of Sleep Medicine guidelines suggest that clinical prediction algorithms can be used to screen patients with obstructive sleep apnea (OSA) without replacing polysomnography, the gold standard.Objective: We aimed to identify, gather, and analyze existing machine learning approaches that are being used for disease screening in adult patients with suspected OSA. Methods: We searched the MEDLINE, Scopus, and ISI Web of Knowledge databases to evaluate the validity of different machine learning techniques, with polysomnography as the gold standard outcome measure and used the Prediction Model Risk of Bias Assessment Tool (Kleijnen Systematic Reviews Ltd) to assess risk of bias and applicability of each included study. Results: Our search retrieved 5479 articles, of which 63 (1.15%) articles were included. We found 23 studies performing diagnostic model development alone, 26 with added internal validation, and 14 applying the clinical prediction algorithm to an independent sample (although not all reporting the most common discrimination metrics, sensitivity or specificity). Logistic regression was applied in 35 studies, linear regression in 16, support vector machine in 9, neural networks in 8, decision trees in 6, and Bayesian networks in 4. Random forest, discriminant analysis, classification and regression tree, and nomogram were each performed in 2 studies, whereas Pearson correlation, adaptive neuro-fuzzy inference system, artificial immune recognition system, genetic algorithm, supersparse linear integer models, and k-nearest neighbors algorithm were each performed in 1 study. The best area under the receiver operating curve was 0.98 (0.96-0.99) for age, waist circumference, Epworth Somnolence Scale score, and oxygen saturation as predictors in a logistic regression. Conclusions: Although high values were obtained, they still lacked external validation results in large cohorts and a standard OSA criteria definition. Trial Registration: PROSPERO CRD42021221339; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=221339(J Med Internet Res 2022;24(9):e39452) doi: 10.2196/39452
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.