2023
Authors
Gomes, A; Pereira, T; Silva, F; Franco, P; Carvalho, DC; Dias, SC; Oliveira, HP;
Publication
IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023, Istanbul, Turkiye, December 5-8, 2023
Abstract
Bone marrow edema (BME) or bone marrow lesion is the term attributed to an observed signal change within the bone marrow in magnetic resonance imaging (MRI). BME can be originated from multiple mechanisms, with pain being the main symptom. The presence of BME is an unspecific but sensitive sign with a wide differential diagnosis, that may act as a guide that leads to a systematic and correct interpretation of the magnetic resonance examination. An automatic approach for BME detection and quantification aims to reduce the overload of clinicians, decreasing human error and accelerating the time to the correct diagnosis. In this work, the bone region on the MRI slice was split into several patches and a CNN-based model was trained to detect BME in each patch from the MRI slice. The learning model developed achieved an AUC of 0.853 ± 0.056, showing that the CNN-based model can be used to detect BME in the MRI and confirming the patch strategy implemented to deal with the small data size and allowing the neural network to learn the specific information related with the classification task by reducing the region of the image to be considered. A learning model that can help clinicians with BME identification will decrease the time and the error for the diagnosis, and represent the first step for a more objective assessment of the BME. © 2023 IEEE.
2023
Authors
Simões, M; Pereira, T; Silva, F; Machado, JMF; Oliveira, HP;
Publication
IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023, Istanbul, Turkiye, December 5-8, 2023
Abstract
Microsatellite Instability (MSI) is an important biomarker in cancer patients, showing a defective DNA mismatch repair system. Its detection allows the use of immunotherapy to treat cancer, an approach that is revolutionizing cancer treatment. MSI is especially relevant for three types of cancer: Colon Adenocarcinoma (COAD), Stomach Adenocarcinoma (STAD), and Uterus corpus endometrial cancer (UCEC). In this work, learning algorithms were employed to predict MSI using RNA-seq data from The Cancer Genome Atlas (TCGA) database, with a focus on the selection of the most informative genomic features. The Multi-Layer Perceptron (MLP) obtained the best score (AUC = 98.44%), showing that it is possible to exploit information from RNA-seq data to find relevant relationships with the instability levels of microsatellites (MS). The accurate prediction of MSI with transcription data from cancer patients will help with the correct determination of MSI status and adequate prescription of immunotherapy, creating more precise and personalized patient care. At the genetic level, the study revealed a high expression of genes related to cell regulation functions, and a low expression of genes responsible for Mismatch Repair functions, in patients with high instability.
2023
Authors
Descalzi, O; Facao, M; Cartes, C; Carvalho, MI; Brand, HR;
Publication
CHAOS
Abstract
We investigate the properties of time-dependent dissipative solitons for a cubic complex Ginzburg-Landau equation stabilized by nonlinear gradient terms. The separation of initially nearby trajectories in the asymptotic limit is predominantly used to distinguish qualitatively between time-periodic behavior and chaotic localized states. These results are further corroborated by Fourier transforms and time series. Quasiperiodic behavior is obtained as well, but typically over a fairly narrow range of parameter values. For illustration, two examples of nonlinear gradient terms are examined: the Raman term and combinations of the Raman term with dispersion of the nonlinear gain. For small quintic perturbations, it turns out that the chaotic localized states are showing a transition to periodic states, stationary states, or collapse already for a small magnitude of the quintic perturbations. This result indicates that the basin of attraction for chaotic localized states is rather shallow.
2023
Authors
Malheiro, D; Facao, M; Carvalho, MI;
Publication
OPTICS LETTERS
Abstract
Dissipative quartic solitons have gained interest in the field of mode-locked lasers for their energy-width scaling which allows the generation of ultrashort pulses with high energies. Pursuing the characterization of such pulses, here we found soliton solutions of a distributed model for mode locked lasers in the presence of either positive or negative fourth-order dispersion (4OD). We studied the impact the laser parameters may have on the profiles, range of existence, and energy-width relation of the output pulses. The most energetic and narrowest solutions occur for negative 4OD, with the energy having an inverse cubic dependence with the width in most cases. Our simulations showed that the spectral filtering has the biggest contribution in the generation of short (widths as low as 39 fs) and very energetic (391 nJ) optical pulses.(c) 2023 Optica Publishing Group
2023
Authors
Fernandes, R; Bugla, S; Pinto, P; Pinto, A;
Publication
SENSORS
Abstract
The sharing of cyberthreat information within a community or group of entities is possible due to solutions such as the Malware Information Sharing Platform (MISP). However, the MISP was considered limited if its information was deemed as classified or shared only for a given period of time. A solution using searchable encryption techniques that better control the sharing of information was previously proposed by the same authors. This paper describes a prototype implementation for two key functionalities of the previous solution, considering multiple entities sharing information with each other: the symmetric key generation of a sharing group and the functionality to update a shared index. Moreover, these functionalities are evaluated regarding their performance, and enhancements are proposed to improve the performance of the implementation regarding its execution time. As the main result, the duration of the update process was shortened from around 2922 s to around 302 s, when considering a shared index with 100,000 elements. From the security analysis performed, the implementation can be considered secure, thus confirming the secrecy of the exchanged nonces. The limitations of the current implementation are depicted, and future work is pointed out.
2023
Authors
Ferreira, IA; Godina, R; Pinto, A; Pinto, P; Carvalho, H;
Publication
COMPUTERS & INDUSTRIAL ENGINEERING
Abstract
The role of new technologies such as additive manufacturing and blockchain technology in designing and implementing circular economy ecosystems is not a trivial issue. This study aimed to understand if blockchain technology can be an enabler tool for developing additive symbiotic networks. A real case study was developed regarding a circular economy ecosystem in which a fused granular fabrication 3D printer is used to valorize polycarbonate waste. The industrial symbiosis network comprised four stakeholders: a manufacturing company that produces polycarbonate waste, a municipality service responsible for the city waste management, a start-up holding the 3D printer, and a non-profit store. It was identified a set of six requirements to adopt the blockchain technology in an additive symbiotic network, bearing in mind the need to have a database to keep track of the properties of the input material for the 3D printer during the exchanges, in addition to the inexistence of mechanisms of trust or cooperation between well-established industries and the additive manufacturing industry. The findings suggested a permissioned blockchain to support the implementation of the additive symbiotic network, namely, to enable the physical transactions (quantity and quality of waste material PC sheets) and monitoring and reporting (additive manufacturing technology knowledge and final product's quantity and price).Future research venues include developing blockchain-based systems that enhance the development of ad-ditive symbiotic networks.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.