Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CTM

2023

Evaluation of Regularization Techniques for Transformers-Based Models

Authors
Oliveira, HS; Ribeiro, PP; Oliveira, HP;

Publication
Pattern Recognition and Image Analysis - 11th Iberian Conference, IbPRIA 2023, Alicante, Spain, June 27-30, 2023, Proceedings

Abstract

2023

Single Modality vs. Multimodality: What Works Best for Lung Cancer Screening?

Authors
Sousa, JV; Matos, P; Silva, F; Freitas, P; Oliveira, HP; Pereira, T;

Publication
SENSORS

Abstract
In a clinical context, physicians usually take into account information from more than one data modality when making decisions regarding cancer diagnosis and treatment planning. Artificial intelligence-based methods should mimic the clinical method and take into consideration different sources of data that allow a more comprehensive analysis of the patient and, as a consequence, a more accurate diagnosis. Lung cancer evaluation, in particular, can benefit from this approach since this pathology presents high mortality rates due to its late diagnosis. However, many related works make use of a single data source, namely imaging data. Therefore, this work aims to study the prediction of lung cancer when using more than one data modality. The National Lung Screening Trial dataset that contains data from different sources, specifically, computed tomography (CT) scans and clinical data, was used for the study, the development and comparison of single-modality and multimodality models, that may explore the predictive capability of these two types of data to their full potential. A ResNet18 network was trained to classify 3D CT nodule regions of interest (ROI), whereas a random forest algorithm was used to classify the clinical data, with the former achieving an area under the ROC curve (AUC) of 0.7897 and the latter 0.5241. Regarding the multimodality approaches, three strategies, based on intermediate and late fusion, were implemented to combine the information from the 3D CT nodule ROIs and the clinical data. From those, the best model-a fully connected layer that receives as input a combination of clinical data and deep imaging features, given by a ResNet18 inference model-presented an AUC of 0.8021. Lung cancer is a complex disease, characterized by a multitude of biological and physiological phenomena and influenced by multiple factors. It is thus imperative that the models are capable of responding to that need. The results obtained showed that the combination of different types may have the potential to produce more comprehensive analyses of the disease by the models.

2023

Automated Detection and Identification of Olive Fruit Fly Using YOLOv7 Algorithm

Authors
Victoriano, M; Oliveira, L; Oliveira, HP;

Publication
Pattern Recognition and Image Analysis - 11th Iberian Conference, IbPRIA 2023, Alicante, Spain, June 27-30, 2023, Proceedings

Abstract
The impact of climate change on global temperature and precipitation patterns can lead to an increase in extreme environmental events. These events can create favourable conditions for the spread of plant pests and diseases, leading to significant production losses in agriculture. To mitigate these losses, early detection of pests is crucial in order to implement effective and safe control management strategies, to protect the crops, public health and the environment. Our work focuses on the development of a computer vision framework to detect and classify the olive fruit fly, also known as Bactrocera oleae, from images, which is a serious concern to the EU’s olive tree industry. The images of the olive fruit fly were obtained from traps placed throughout olive orchards located in Greece. The approach entails augmenting the dataset and fine-tuning the YOLOv7 model to improve the model performance, in identifying and classifying olive fruit flies. A Portuguese dataset was also used to further perform detection. To assess the model, a set of metrics were calculated, and the experimental results indicated that the model can precisely identify the positive class, which is the olive fruit fly.

2023

Mortality prediction using medical time series on TBI patients

Authors
Fonseca, J; Liu, XY; Oliveira, HP; Pereira, T;

Publication
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE

Abstract
Background and objective: Traumatic Brain Injury (TBI) is one of the leading causes of injury-related mortality in the world, with severe cases reaching mortality rates of 30-40%. It is highly heterogeneous both in causes and consequences making more complex the medical interpretation and prognosis. Gathering clinical, demographic, and laboratory data to perform a prognosis requires time and skill in several clinical specialties. Artificial intelligence (AI) methods can take advantage of existing data by performing helpful predictions and guiding physicians toward a better prognosis and, consequently, better healthcare. The objective of this work was to develop learning models and evaluate their capability of predicting the mortality of TBI. The predictive model would allow the early assessment of the more serious cases and scarce medical resources can be pointed toward the patients who need them most. Methods: Long Short Term Memory (LSTM) and Transformer architectures were tested and compared in performance, coupled with data imbalance, missing data, and feature selection strategies. From the Medical Information Mart for Intensive Care III (MIMIC-III) dataset, a cohort of TBI patients was selected and an analysis of the first 48 hours of multiple time series sequential variables was done to predict hospital mortality. Results: The best performance was obtained with the Transformer architecture, achieving an AUC of 0.907 with the larger group of features and trained with class proportion class weights and binary cross entropy loss. Conclusions: Using the time series sequential data, LSTM and Transformers proved to be both viable options for predicting TBI hospital mortality in 48 hours after admission. Overall, using sequential deep learning models with time series data to predict TBI mortality is viable and can be used as a helpful indicator of the well-being of patients.

2023

AI-based Models to Predict the Heart Rate Using PPG and Accelerometer Signals During Physical Exercise

Authors
Ribeiro, L; Oliveira, HP; Hu, X; Pereira, T;

Publication
IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023, Istanbul, Turkiye, December 5-8, 2023

Abstract
PPG signal is a valuable resource for continuous heart rate monitoring; however, this signal suffers from artifact movements, which is particularly relevant during physical exercise and makes this biomedical signal difficult to use for heart rate detection during those activities. The purpose of this study was to develop learning models to determine heart rate using data from wearables (PPG and acceleration signals) and dealing with noise during physical exercise. Learning models based on CNNs and LSTMs were developed to predict the heart rate. The PPG signal was combined with data from accelerometers trying to overcome the noise movement on the PPG signal. Two datasets were used on this work: the 2015 IEEE Signal Processing Cup (SPC) dataset was used for training and testing, and another dataset was used for validation of the learning model (PPG-DaLiA dataset). The predictions obtained by the learning model represented a mean average error of 7.033±5.376 bpm for the SCP dataset, while a mean average error of 9.520±8.443 bpm for the validation set. The use of acceleration data increases the performance of the learning models on the prediction of the heart rate, showing the benefits of using this source of data to overcome the noise movement problem on the PPG signal. The combination of PPG signal with acceleration data could allow the learning models to use more information regarding the motion artifacts that affect the PPG and improve performance on the physiological event detections, which will largely spread the use of wearables on the healthcare applications for continuous monitor the physiological state allowing early and accurate detection of pathological events.

2023

Multitask learning approach for lung nodule segmentation and classification in CT images

Authors
Fernandes, L; Oliveira, HP;

Publication
IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023, Istanbul, Turkiye, December 5-8, 2023

Abstract
Amongst the different types of cancer, lung cancer is the one with the highest mortality rate and consequently, there is an urgent need to develop early detection methods to improve the survival probabilities of the patients. Due to the millions of deaths that are caused annually by cancer, there is large interest int the scientific community to developed deep learning models that can be employed in computer aided diagnostic tools.Currently, in the literature, there are several works in the Radiomics field that try to develop new solutions by employing learning models for lung nodule classification. However, in these types of application, it is usually required to extract the lung nodule from the input images, while using a segmentation mask made by a radiologist. This means that in a clinical scenario, to be able to employ the developed learning models, it is required first to manually segment the lung nodule. Considering the fact that several patients are attended daily in the hospital with suspicion of lung cancer, the segmentation of each lung nodule would become a tiresome task. Furthermore, the available algorithms for automatic lung nodule segmentation are not efficient enough to be used in a real application.In response to the current limitations of the state of the art, the proposed work attempts to evaluate a multitasking approach where both the segmentation and the classification task are executed in parallel. As a baseline, we also study a sequential approach where first we employ DL models to segment the lung nodule, corp the lung nodule from the input image and then finally, we classify the cropped nodule. Our results show that the multitasking approach is better than to sequentially execute the segmentation and classification task for lung nodule classification. For instances, while the multitasking approach was able to achieve an AUC of 84.49% in the classification task, the sequential approach was only able to achieve an AUC of 72.43%. These results show that the proposed multitasking approach can become a viable alternative to the classification and segmentation of lung nodules.

  • 50
  • 368