2025
Authors
Ribeiro, R; Neves, I; Oliveira, HP; Pereira, T;
Publication
Comput. Biol. Medicine
Abstract
Traumatic Brain Injury (TBI) is a form of brain injury caused by external forces, resulting in temporary or permanent impairment of brain function. Despite advancements in healthcare, TBI mortality rates can reach 30%–40% in severe cases. This study aims to assist clinical decision-making and enhance patient care for TBI-related complications by employing Artificial Intelligence (AI) methods and data-driven approaches to predict decompensation. This study uses learning models based on sequential data from Electronic Health Records (EHR). Decompensation prediction was performed based on 24-h in-mortality prediction at each hour of the patient's stay in the Intensive Care Unit (ICU). A cohort of 2261 TBI patients was selected from the MIMIC-III dataset based on age and ICD-9 disease codes. Logistic Regressor (LR), Long-short term memory (LSTM), and Transformers architectures were used. Two sets of features were also explored combined with missing data strategies by imputing the normal value, data imbalance techniques with class weights, and oversampling. The best performance results were obtained using LSTMs with the original features with no unbalancing techniques and with the added features and class weight technique, with AUROC scores of 0.918 and 0.929, respectively. For this study, using EHR time series data with LSTM proved viable in predicting patient decompensation, providing a helpful indicator of the need for clinical interventions. © 2025 Elsevier Ltd
2025
Authors
Descalzi, O; Facao, M; Carvalho, MI; Cartes, C; Brand, HR;
Publication
PHYSICA D-NONLINEAR PHENOMENA
Abstract
We study the dynamics as well as the interaction of stable dissipative solitons (DSs) of the cubic complex Ginzburg-Landau equation which are stabilized only by nonlinear gradient (NLG) terms. First we review stationary, periodic, quasi-periodic, and chaotic solutions. Then we investigate sudden transitions to chaotic from periodic and vice versa as a function of one parameter, as well as different outcomes, for fixed parameters, when varying the initial condition. In addition, we present a quasi-analytic approach to evaluate the separation of nearby trajectories for the case of stationary DSs as well as for periodic DSs, both stabilized by nonlinear gradient terms. In a separate section collisions between different types of DSs are reviewed. First we present a concise review of collisions of DSs without NLG terms and then the results of collisions between stationary DSs stabilized by NLG terms are summarized focusing on the influence of the nonlinear gradient term associated with the Raman effect. We point out that both, meandering oscillatory bound states as well as bound states with large amplitude oscillations appear to be specific for coupled cubic complex Ginzburg-Landau equations with a stabilizing cubic nonlinear gradient term.
2025
Authors
Sales Mendes, A; Lozano Murciego, Á; Silva, LA; Jiménez Bravo, M; Navarro Cáceres, M; Bernardes, G;
Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
Monodic folk music has traditionally been preserved in physical documents. It constitutes a vast archive that needs to be digitized to facilitate comprehensive analysis using AI techniques. A critical component of music score digitization is the transcription of lyrics, an extensively researched process in Optical Character Recognition (OCR) and document layout analysis. These fields typically require the development of specific models that operate in several stages: first, to detect the bounding boxes of specific texts, then to identify the language, and finally, to recognize the characters. Recent advances in vision language models (VLMs) have introduced multimodal capabilities, such as processing images and text, which are competitive with traditional OCR methods. This paper proposes an end-to-end system for extracting lyrics from images of handwritten musical scores. We aim to evaluate the performance of two state-of-the-art VLMs to determine whether they can eliminate the need to develop specialized text recognition and OCR models for this task. The results of the study, obtained from a dataset in a real-world application environment, are presented along with promising new research directions in the field. This progress contributes to preserving cultural heritage and opens up new possibilities for global analysis and research in folk music. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2025
Authors
Zijing Cao; António Pinto; Gilberto Bernardes;
Publication
Proceedings of the 17th International Conference on Computer Supported Education
Abstract
2025
Authors
Schutte, P; Corbetta, V; Beets-Tan, R; Silva, W;
Publication
Lecture Notes in Computer Science - Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 Workshops
Abstract
2025
Authors
Cobo, M; del Barrio, AP; Fernández Miranda, PM; Bellón, PS; Iglesias, LL; Silva, W;
Publication
MACHINE LEARNING IN MEDICAL IMAGING, PT II, MLMI 2024
Abstract
Prognosis after intracranial hemorrhage (ICH) is influenced by a complex interplay between imaging and tabular data. Rapid and reliable prognosis are crucial for effective patient stratification and informed treatment decision-making. In this study, we aim to enhance image-based prognosis by learning a robust feature representation shared between prognosis and the clinical and demographic variables most highly correlated with it. Our approach mimics clinical decision-making by reinforcing the model to learn valuable prognostic data embedded in the image. We propose a 3D multi-task image model to predict prognosis, Glasgow Coma Scale and age, improving accuracy and interpretability. Our method outperforms current state-of-the-art baseline image models, and demonstrates superior performance in ICH prognosis compared to four board-certified neuroradiologists using only CT scans as input. We further validate our model with interpretability saliency maps. Code is available at https://github.com/MiriamCobo/MultitaskLearning_ICH_Prognosis.git.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.