2010
Authors
Facao, M; Carvalho, MI; Latas, SC; Ferreira, MF;
Publication
PHYSICS LETTERS A
Abstract
The eruption solitons that exist under the complex cubic-quintic Ginzburg-Landau equation (CGLE) may be eliminated by the introduction of a term that in the optical context represents intrapulse Raman scattering (IRS) The later was observed in direct numerical simulations and here we have obtained the system of ordinary differential equations and the corresponding traveling solitons that replace the eruption solutions In fact we have found traveling solutions for a subset of the eruption CGLE parameter region and a wide range of the IRS parameter However for each set of CGLE parameters they are stable solely above a certain threshold of IRS
2010
Authors
Facao, M; Carvalho, MI; Parker, DF;
Publication
PHYSICAL REVIEW E
Abstract
Ultrashort pulse propagation in fibers is affected by intrapulse Raman scattering (IRS) which causes both a linear frequency downshift and a quadratic displacement of the peak pulse, as functions of the propagation distance. This effect has been known and treated by perturbation methods applied to the nonlinear Schroumldinger equation since the period of intense research on soliton propagation. Here, we find solutions of the model equation using an accelerating self-similarity variable and study their stability. These solutions have Airy function asymptotics which give them infinite energy. For small IRS, the algebraically decaying tail is negligible and these solutions are a very good approximation of the profiles observed in the full equation simulations. For strong IRS (but beyond the regime in which the evolution equation is valid for silica fibers), the self-similar pulses have noticeable left tails exhibiting Airy oscillations. Whenever their truncated forms are used as initial conditions of the full equation, they experience amplitude decay and show left tails that are consistent with radiation escaping from the central pulse. These observations are interpreted as being the effects of a continuum constitution of the infinite left tail.
2010
Authors
Carvalho, MI; Facao, M;
Publication
OPTICS EXPRESS
Abstract
New types of finite energy Airy beams are proposed. We consider two different types of beams, namely, beams that are obtained as blocked and exponentially attenuated versions of Airy functions Ai and Bi, and beams of finite width but having the Airy functions typical phase. All of them show very interesting properties, such as parabolic trajectories for longer propagation distances, profile evolution exhibiting less diffraction, or better definiteness of the main peak, when compared with other finite energy Airy beams studied before. (C) 2010 Optical Society of America
2010
Authors
Almeida, A; Alvelos, H;
Publication
INTERACTIVE STORYTELLING
Abstract
In the last few years the word "documentary" has been loosely used to describe multimedia pieces that incorporate video no matter its nature, technique, language or scope, taking advantage of the fuzzy and fragile boundaries of the documentary definition. The present manifesto aims to give a brief insight on the interactive documentary arena and also to sketch some production remarks for future interactive documentary productions.
2010
Authors
Azevedo, TCS; Tavares, JMRS; Vaz, MAP;
Publication
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING
Abstract
This work presents a volumetric approach to reconstruct and characterise 3D models of external anatomical structures from 2D images. Volumetric methods represent the final volume using a finite set of 3D geometric primitives, usually designed as voxels. Thus, from an image sequence acquired around the object to reconstruct, the images are calibrated and the 3D models of the referred object are built using different approaches of volumetric methods. The final goal is to analyse the accuracy of the obtained models when modifying some of the parameters of the considered volumetric methods, such as the type of voxel projection (rectangular or accurate), the way the consistency of the voxels is tested (only silhouettes or silhouettes and photo-consistency) and the initial size of the reconstructed volume.
2010
Authors
Bernardes, G; Guedes, C; Pennycook, B;
Publication
Proceedings of the 7th Sound and Music Computing Conference, SMC 2010
Abstract
In this paper we present an application using an evolutionary algorithm for real-time generation of polyphonic drum loops in a particular style. The population of rhythms is derived from analysis of MIDI drum loops, which profile each style for subsequent automatic generation of rhythmic patterns that evolve over time through genetic algorithm operators and user input data. © 2010 Gilberto Bernardes et al.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.