2024
Authors
Miranda, I; Agrotis, G; Tan, RB; Teixeira, LF; Silva, W;
Publication
46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024, Orlando, FL, USA, July 15-19, 2024
Abstract
Breast cancer, the most prevalent cancer among women, poses a significant healthcare challenge, demanding effective early detection for optimal treatment outcomes. Mammography, the gold standard for breast cancer detection, employs low-dose X-rays to reveal tissue details, particularly cancerous masses and calcium deposits. This work focuses on evaluating the impact of incorporating anatomical knowledge to improve the performance and robustness of a breast cancer classification model. In order to achieve this, a methodology was devised to generate anatomical pseudo-labels, simulating plausible anatomical variations in cancer masses. These variations, encompassing changes in mass size and intensity, closely reflect concepts from the BI-RADs scale. Besides anatomical-based augmentation, we propose a novel loss term promoting the learning of cancer grading by our model. Experiments were conducted on publicly available datasets simulating both in-distribution and out-of-distribution scenarios to thoroughly assess the model's performance under various conditions.
2024
Authors
Aubard, M; Madureira, A; Teixeira, LF; Pinto, J;
Publication
CoRR
Abstract
With the growing interest in underwater exploration and monitoring, autonomous underwater vehicles have become essential. The recent interest in onboard deep learning (DL) has advanced real-time environmental interaction capabilities relying on efficient and accurate vision-based DL models. However, the predominant use of sonar in underwater environments, characterized by limited training data and inherent noise, poses challenges to model robustness. This autonomy improvement raises safety concerns for deploying such models during underwater operations, potentially leading to hazardous situations. This article aims to provide the first comprehensive overview of sonar-based DL under the scope of robustness. It studies sonar-based DL perception task models, such as classification, object detection, segmentation, and simultaneous localization and mapping. Furthermore, this article systematizes sonar-based state-of-the-art data sets, simulators, and robustness methods, such as neural network verification, out-of-distribution, and adversarial attacks. This article highlights the lack of robustness in sonar-based DL research and suggests future research pathways, notably establishing a baseline sonar-based data set and bridging the simulation-to-reality gap.
2024
Authors
Aubard, M; Antal, L; Madureira, A; Teixeira, LF; Ábrahám, E;
Publication
CoRR
Abstract
This paper introduces ROSAR, a novel framework enhancing the robustness of deep learning object detection models tailored for side-scan sonar (SSS) images, generated by autonomous underwater vehicles using sonar sensors. By extending our prior work on knowledge distillation (KD), this framework integrates KD with adversarial retraining to address the dual challenges of model efficiency and robustness against SSS noises. We introduce three novel, publicly available SSS datasets, capturing different sonar setups and noise conditions. We propose and formalize two SSS safety properties and utilize them to generate adversarial datasets for retraining. Through a comparative analysis of projected gradient descent (PGD) and patch-based adversarial attacks, ROSAR demonstrates significant improvements in model robustness and detection accuracy under SSS-specific conditions, enhancing the model's robustness by up to 1.85%. ROSAR is available at https://github.com/remaro-network/ROSAR-framework.
2024
Authors
Pereira, A; Carvalho, P; Côrte Real, L;
Publication
Advances in Internet of Things & Embedded Systems
Abstract
2024
Authors
Santos, T; Oliveira, H; Cunha, A;
Publication
COMPUTER SCIENCE REVIEW
Abstract
In recent years, the number of crimes with weapons has grown on a large scale worldwide, mainly in locations where enforcement is lacking or possessing weapons is legal. It is necessary to combat this type of criminal activity to identify criminal behavior early and allow police and law enforcement agencies immediate action.Despite the human visual structure being highly evolved and able to process images quickly and accurately if an individual watches something very similar for a long time, there is a possibility of slowness and lack of attention. In addition, large surveillance systems with numerous equipment require a surveillance team, which increases the cost of operation. There are several solutions for automatic weapon detection based on computer vision; however, these have limited performance in challenging contexts.A systematic review of the current literature on deep learning-based weapon detection was conducted to identify the methods used, the main characteristics of the existing datasets, and the main problems in the area of automatic weapon detection. The most used models were the Faster R-CNN and the YOLO architecture. The use of realistic images and synthetic data showed improved performance. Several challenges were identified in weapon detection, such as poor lighting conditions and the difficulty of small weapon detection, the last being the most prominent. Finally, some future directions are outlined with a special focus on small weapon detection.
2024
Authors
Pinheiro, MR; Fernandes, LE; Carneiro, IC; Carvalho, SD; Henrique, RM; Tuchin, VV; Oliveira, HP; Oliveira, LM;
Publication
JOURNAL OF BIOPHOTONICS
Abstract
With the objective of developing new methods to acquire diagnostic information, the reconstruction of the broadband absorption coefficient spectra (mu a[lambda]) of healthy and chromophobe renal cell carcinoma kidney tissues was performed. By performing a weighted sum of the absorption spectra of proteins, DNA, oxygenated, and deoxygenated hemoglobin, lipids, water, melanin, and lipofuscin, it was possible to obtain a good match of the experimental mu a(lambda) of both kidney conditions. The weights used in those reconstructions were estimated using the least squares method, and assuming a total water content of 77% in both kidney tissues, it was possible to calculate the concentrations of the other tissue components. It has been shown that with the development of cancer, the concentrations of proteins, DNA, oxygenated hemoglobin, lipids, and lipofuscin increase, and the concentration of melanin decreases. Future studies based on minimally invasive spectral measurements will allow cancer diagnosis using the proposed approach.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.