Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CTM

2016

Multimedia content classification metrics for content adaptation

Authors
Fernandes, R; Andrade, MT;

Publication
U.Porto Journal of Engineering

Abstract
Multimedia content consumption is very popular nowadays. However, not every content can be consumed in its original format: the combination of content, transport and access networks, consumption device and usage environment characteristics may all pose restrictions to that purpose. One way to provide the best possible quality to the user is to adapt the content according to these restrictions as well as user preferences. This adaptation stage can be best executed if knowledge about the content is known a-priori. In order to provide this knowledge we classify the content based on metrics to define its temporal and spatial complexity. The temporal complexity classification is based on the Motion Vectors of the predictive encoded frames and on the difference between frames. The spatial complexity classification is based on different implementations of an edge detection algorithm and an image activity measure.

2016

A Precise and Hardware-Efficient Time Synchronization Method for Wearable Wired Networks

Authors
Derogarian, F; Ferreira, JC; Tavares, VMG;

Publication
IEEE SENSORS JOURNAL

Abstract
This paper presents and evaluates a high-precision, one-way, and master-to-slave time synchronization protocol to minimize the clock time skew in low-power wearable sensor networks. The protocol is implemented in the media access control layer, and is based on directly eliminating deterministic delays during transmission from source to destination node, at hardware level. The proposed protocol keeps the one-hop average synchronization error close to the signal propagation delay, and the one-hop peak-to-peak jitter equals to the period of each node's system clock period. Both values grow linearly as the hop count increases. The protocol can achieve synchronization in the range of a few nanoseconds, enough to satisfy the requirements of many applications related to wearable networks, with one-way messages. Both theoretical analysis and experimental results, in wired wearable networks, show that the proposed protocol has a better performance than precision time protocol and a standard timing protocol for both single and multi-hop situations. The proposed approach is simpler, requires no calculations, and exchanges fewer messages. Experimental results obtained with an implementation of the protocol in a 0.35-mu m CMOS technology show that this approach keeps the one-hop average clock skew around 4.6 ns and peak-to-peak skew around 50 ns for a system clock frequency of 20 mh.

2016

Dynamically Reconfigurable FFT Processor for Flexible OFDM Baseband Processing

Authors
Ferreira, ML; Barahimi, A; Ferreira, JAC;

Publication
2016 11TH IEEE INTERNATIONAL CONFERENCE ON DESIGN & TECHNOLOGY OF INTEGRATED SYSTEMS IN NANOSCALE ERA (DTIS)

Abstract
The Physical layer architectures for the next generation of wireless devices will be characterized by a high degree of flexibility for real-time adaptation to communication conditions variability. OFDM-based architectures are strong candidates for the Physical layer implementation in 5G systems and one of the most important baseband processing operations required by this waveform is the Fast Fourier Transform (FFT). This paper proposes a dynamically reconfigurable FFT processor supporting FFT sizes and throughputs required by the most widely used wireless standards. The FFT reconfiguration was achieved by means of FPGA-based Dynamic Partial Reconfiguration (DPR) techniques, which enables run-time FFT size adaptation according to communication requirements and better resource utilization. The impact of DPR in terms of reconfiguration time and power consumption overhead was evaluated. The obtained results encourage the exploitation of DPR techniques to implement reconfigurable hardware infrastructures for OFDM baseband processing engines.

2016

Dynamically Reconfigurable LTE-compliant OFDM Modulator for Downlink Transmission

Authors
Ferreira, ML; Barahimi, A; Ferreira, JC;

Publication
2016 CONFERENCE ON DESIGN OF CIRCUITS AND INTEGRATED SYSTEMS (DCIS 2016)

Abstract
As the number of wireless devices, services, communication standards and respective modes of operation rapidly grows, the design of reconfigurable digital baseband processing systems for radio devices becomes more important and challenging. Long Term Evolution (LTE) is among the most relevant wireless systems in 4G communications and its waveform is OFDM-based. According to the LTE mode of operation, OFDM parameters may change and influence baseband processing operations. This paper presents a dynamically reconfigurable LTE-compliant OFDM modulator for Downlink transmission able to adapt its internal hardware organization on-demand according to the digital modulation scheme and OFDM parameters, such as number of data subcarriers, IFFT size, Cyclic Prefix and window length. System reconfiguration is performed by employing FPGA-based Dynamic Partial Reconfiguration (DPR) techniques. The worst-case DPR latencies measured are 895 mu s and 1.192 ms for digital modulation and channel bandwidth adaptation, respectively. These results show that the adopted design approach is feasible in wireless baseband processing systems. Power estimations suggest that circuit specialization at run-time can potentially improve system power efficiency.

2016

Reconfigurable FPGA-Based FFT Processor for Cognitive Radio Applications

Authors
Ferreira, ML; Barahimi, A; Ferreira, JC;

Publication
Applied Reconfigurable Computing - 12th International Symposium, ARC 2016, Mangaratiba, RJ, Brazil, March 22-24, 2016, Proceedings

Abstract
Cognitive Radios (CR) are viewed as a solution for spectrum utilization and management in next generation wireless networks. In order to adapt themselves to the actual communications environment, CR devices require highly flexible baseband processing engines. One of the most relevant operations involved in radio baseband processing is the FFT. This work presents a reconfigurable FFT processor supporting FFT sizes and throughputs required by the most used wireless communication standards. By employing Dynamic Partial Reconfiguration (DPR), the implemented design can adapt the FFT size at run-time and specialize its operation to the immediate communication demands. This translates to hardware savings, enhanced resource usage efficiency and possible power savings. The results obtained for reconfiguration times suggest that DPR techniques are a viable option for designing flexible and adaptable baseband processing components for CR devices. © Springer International Publishing Switzerland 2016.

2016

A small fully digital open-loop clock and data recovery circuit for wired BANs

Authors
Derogarian, F; Ferreira, JC; Tavares, VG;

Publication
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS

Abstract
This paper proposes a new open-loop and low complexity (small size) fast-lock synchronization circuit for clock and data recovery in wearable systems. The system includes sensors embedded in textile and connected by conductive yarns. Synchronization is based on the open-loop selection of the correct phase of the receiver clock synchronously with the incoming signal. The clock generator of the receiver is an autonomous oscillator set to operate at the same nominal frequency. The circuit lock time is at most one clock cycle, faster than all methods based on phase-locked loops or delay-locked loops. The circuit can be used for baseband communication independently of the signal coding method used in the physical layer, making it suitable for many applications. The fully digital circuit (including non-return-to-zero inverted decoder) occupies 0.0022 in a 0.35 complementary metal-oxide semiconductor (CMOS) process, a smaller implementation than many existing circuits, and supports a maximum system clock frequency of 70 for a 35-data rate. Experimental results demonstrate that the proposed circuit robustly generates a synchronous clock for data recovery. The circuit is suitable for systems that tolerate some jitter but requires fast lock time, small size, and low energy consumption. Copyright (c) 2015 John Wiley & Sons, Ltd.

  • 214
  • 377