Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CTM

2018

Methods for multiple-telescope beam imaging and guiding in the near-infrared

Authors
Anugu, N; Amorim, A; Gordo, P; Eisenhauer, F; Pfuhl, O; Haug, M; Wieprecht, E; Wiezorrek, E; Lima, J; Perrin, G; Brandner, W; Straubmeier, C; Le Bouquin, JB; Garcia, PJV;

Publication
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY

Abstract
Atmospheric turbulence and precise measurement of the astrometric baseline vector between any two telescopes are two major challenges in implementing phase-referenced interferometric astrometry and imaging. They limit the performance of a fibre-fed interferometer by degrading the instrument sensitivity and the precision of astrometric measurements and by introducing image reconstruction errors due to inaccurate phases. A multiple-beam acquisition and guiding camera was built to meet these challenges for a recently commissioned four-beam combiner instrument, GRAVITY, at the European Southern Observatory Very Large Telescope Interferometer. For each telescope beam, it measures (a) field tip-tilts by imaging stars in the sky, (b) telescope pupil shifts by imaging pupil reference laser beacons installed on each telescope using a 2x2 lenslet and (c) higher-order aberrations using a 9x9 Shack-Hartmann. The telescope pupils are imaged to provide visual monitoring while observing. These measurements enable active field and pupil guiding by actuating a train of tip-tilt mirrors placed in the pupil and field planes, respectively. The Shack-Hartmann measured quasi-static aberrations are used to focus the auxiliary telescopes and allow the possibility of correcting the non-common path errors between the adaptive optics systems of the unit telescopes and GRAVITY. The guiding stabilizes the light injection into single-mode fibres, increasing sensitivity and reducing the astrometric and image reconstruction errors. The beam guiding enables us to achieve an astrometric error of less than 50 mu as. Here, we report on the data reduction methods and laboratory tests of the multiple-beam acquisition and guiding camera and its performance on-sky.

2018

Physical parameters and +/- 0.2% parallax of the detached eclipsing binary V923 Scorpii

Authors
Pribulla, T; Merand, A; Kervella, P; Cameron, C; Deen, C; Garcia, PJV; Horrobin, M; Matthews, JM; Moffat, AFJ; Pfuhl, O; Rucinski, SM; Straub, O; Weiss, WW;

Publication
ASTRONOMY & ASTROPHYSICS

Abstract
Context. V923 Sco is a bright (V = 5.91), nearby (pi = 15.46 +/- 0.40 mas) southern eclipsing binary. Because both components are slow rotators, the minimum masses of the components are known with 0.2% precision from spectroscopy. The system seems ideal for very precise mass, radius, and luminosity determinations and, owing to its proximity and long orbital period (similar to 34.8 days), promises to be resolved with long-baseline interferometry. Aims. The principal aim is very accurate determinations of absolute stellar parameters for both components of the eclipsing binary and a model-independent determination of the distance. Methods. New high-precision photometry of both eclipses of V923 Sco with the MOST satellite was obtained. The system was spatially resolved with the VLTI AMBER, PIONIER, and GRAVITY instruments at nine epochs. Combining the projected size of the spectroscopic orbit (in km) and visual orbit (in mas) the distance to the system is derived. Simultaneous analysis of photometric, spectroscopic, and interferometric data was performed to obtain a robust determination of the absolute parameters. Results. Very precise absolute parameters of the components were derived in spite of the parameter correlations. The primary component is found to be overluminous for its mass. Combining spectroscopic and interferometric observations enabled us to determine the distance to V923 Sco with better than 0.2% precision, which provides a stringent test of Gaia parallaxes. Conclusions. It is shown that combining spectroscopic and interferometric observations of nearby eclipsing binaries can lead to extremely accurate parallaxes and stellar parameters.

2017

Enabling Broadband Internet Access Offshore using Tethered Balloons: The BLUECOM plus experience

Authors
Teixeira, FB; Oliveira, T; Lopes, M; Leocadio, C; Salazar, P; Ruela, J; Campos, R; Ricardo, M;

Publication
OCEANS 2017 - ABERDEEN

Abstract
The growth of the Blue Economy has been boosted by a set of traditional and new activities including maritime transportation, fisheries, environmental monitoring, deep sea mining, and inspection missions. These activities are urging for a cost-effective broadband communications solution capable of supporting both above and underwater missions at remote ocean areas, since many of them rely on an ever-increasing number of Autonomous Surface Vehicles (ASV), Autonomous Underwater Vehicles (AUV) and Remote Operated Vehicles (ROV), which need to transmit large amounts of data to shore. The BLUE-COM+ project has considered the usage of helium balloons to increase the antenna height, and overtake the earth curvature and achieve Fresnel zone clearance, combined with the use of sub-GHz frequency bands to enable long range communications. In this paper we present the results obtained in three sea trials. They show that the BLUECOM+ architecture is capable of supporting human and system activities at remote ocean areas by enabling Internet access beyond 50 km from shore, live video conference calls with the quality of experience available on land, and real-time data upload to the cloud by ASVs, AUVs and ROVs using standard access technologies with bitrates above 1 Mbit/s.

2017

Analysis of Resonant Tunnelling Diode Oscillators under Optical Modulation

Authors
Tavares, JS; Pessoa, LM; Figueiredo, JML; Salgado, HM;

Publication
2017 19TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON)

Abstract
In this paper, we investigate the optical modulation characteristics of a resonant tunnelling diode (RTD) oscillator. This preliminary work on the first RTD-PD oscillators with an optical window available from the iBROW project demonstrate that this device can effectively be used to accomplish amplitude and frequency modulation with light injection.

2017

Nonlinear Compensation Assessment in Few-Mode Fibers via Phase-Conjugated Twin Waves

Authors
Tavares, JS; Pessoa, LM; Salgado, HM;

Publication
JOURNAL OF LIGHTWAVE TECHNOLOGY

Abstract
In this paper, we further explore the concept of phase-conjugated twin waves (PCTW) for nonlinear cancellation in space-division multiplexed (SDM) systems. Previously, we demonstrated that the PCTW technique can successfully provide nonlinear cancellation in SDM systems. In this paper, we investigate the cases where two and four spatial modes are copropagating in a multimode fiber, considering three link lengths (1000, 3200, and 8000 km). Weak-and strong-coupling regimes are also evaluated. Our numerical simulation results show an average performance improvement > 10 dB after a 1000 km transmission link.

2017

Analysis of Loop Antenna with Ground Plane for Underwater Communications

Authors
Aboderin, O; Pessoa, LM; Salgado, HM;

Publication
OCEANS 2017 - ABERDEEN

Abstract
Transmission and reception of high-speed short range signal is important for successful underwater water communications between an Autonomous Underwater Vehicle (AUV) or Remote Operated Vehicles (ROVs) and a docking station or underwater sensor nodes during a survey mission. The need for this form of application is currently receiving global attention from scientific groups and industries. Hence, underwater antennas are therefore required to provide these links and achieve good data rates and propagation distances for these applications either in fresh or sea water scenario. In this paper, the performance of loop antenna placed at a specified distance and parallel to the ground plane is assessed through simulation for usage in fresh water and operating in the High Frequency (HF) band. Three variations of this antenna namely; the circular loop, the square loop and the delta loop antennas has been placed on two different ground plane shapes (circular and square) for analyses of their performances. These antennas were designed in FEKO, an electromagnetic simulation software and their performance is assessed in terms of bandwidth and directivity. The results obtained shows that the antennas exhibit wideband and high directivity with square loop antenna placed on a square ground plane having slight advantages over the other antennas with respect to their bandwidth and directivity. Experimental results added for the same antenna, confirmed its performance in terms of the measured parameters are in good agreement with simulation results.

  • 185
  • 368