Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CTM

2024

Latent diffusion models for Privacy-preserving Medical Case-based Explanations

Authors
Campos, F; Petrychenko, L; Teixeira, LF; Silva, W;

Publication
Proceedings of the First Workshop on Explainable Artificial Intelligence for the Medical Domain (EXPLIMED 2024) co-located with 27th European Conference on Artificial Intelligence (ECAI 2024), Santiago de Compostela, Spain, October 20, 2024.

Abstract
Deep-learning techniques can improve the efficiency of medical diagnosis while challenging human experts’ accuracy. However, the rationale behind these classifier’s decisions is largely opaque, which is dangerous in sensitive applications such as healthcare. Case-based explanations explain the decision process behind these mechanisms by exemplifying similar cases using previous studies from other patients. Yet, these may contain personally identifiable information, which makes them impossible to share without violating patients’ privacy rights. Previous works have used GANs to generate anonymous case-based explanations, which had limited visual quality. We solve this issue by employing a latent diffusion model in a three-step procedure: generating a catalogue of synthetic images, removing the images that closely resemble existing patients, and using this anonymous catalogue during an explanation retrieval process. We evaluate the proposed method on the MIMIC-CXR-JPG dataset and achieve explanations that simultaneously have high visual quality, are anonymous, and retain their explanatory value.

2024

Anatomical Concept-based Pseudo-labels for Increased Generalizability in Breast Cancer Multi-center Data

Authors
Miranda, I; Agrotis, G; Tan, RB; Teixeira, LF; Silva, W;

Publication
46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024, Orlando, FL, USA, July 15-19, 2024

Abstract
Breast cancer, the most prevalent cancer among women, poses a significant healthcare challenge, demanding effective early detection for optimal treatment outcomes. Mammography, the gold standard for breast cancer detection, employs low-dose X-rays to reveal tissue details, particularly cancerous masses and calcium deposits. This work focuses on evaluating the impact of incorporating anatomical knowledge to improve the performance and robustness of a breast cancer classification model. In order to achieve this, a methodology was devised to generate anatomical pseudo-labels, simulating plausible anatomical variations in cancer masses. These variations, encompassing changes in mass size and intensity, closely reflect concepts from the BI-RADs scale. Besides anatomical-based augmentation, we propose a novel loss term promoting the learning of cancer grading by our model. Experiments were conducted on publicly available datasets simulating both in-distribution and out-of-distribution scenarios to thoroughly assess the model's performance under various conditions.

2024

Sonar-based Deep Learning in Underwater Robotics: Overview, Robustness and Challenges

Authors
Aubard, M; Madureira, A; Teixeira, LF; Pinto, J;

Publication
CoRR

Abstract
With the growing interest in underwater exploration and monitoring, autonomous underwater vehicles have become essential. The recent interest in onboard deep learning (DL) has advanced real-time environmental interaction capabilities relying on efficient and accurate vision-based DL models. However, the predominant use of sonar in underwater environments, characterized by limited training data and inherent noise, poses challenges to model robustness. This autonomy improvement raises safety concerns for deploying such models during underwater operations, potentially leading to hazardous situations. This article aims to provide the first comprehensive overview of sonar-based DL under the scope of robustness. It studies sonar-based DL perception task models, such as classification, object detection, segmentation, and simultaneous localization and mapping. Furthermore, this article systematizes sonar-based state-of-the-art data sets, simulators, and robustness methods, such as neural network verification, out-of-distribution, and adversarial attacks. This article highlights the lack of robustness in sonar-based DL research and suggests future research pathways, notably establishing a baseline sonar-based data set and bridging the simulation-to-reality gap. © 1976-2012 IEEE.

2024

ROSAR: An Adversarial Re-Training Framework for Robust Side-Scan Sonar Object Detection

Authors
Aubard, M; Antal, L; Madureira, A; Teixeira, LF; Ábrahám, E;

Publication
CoRR

Abstract
This paper introduces ROSAR, a novel framework enhancing the robustness of deep learning object detection models tailored for side-scan sonar (SSS) images, generated by autonomous underwater vehicles using sonar sensors. By extending our prior work on knowledge distillation (KD), this framework integrates KD with adversarial retraining to address the dual challenges of model efficiency and robustness against SSS noises. We introduce three novel, publicly available SSS datasets, capturing different sonar setups and noise conditions. We propose and formalize two SSS safety properties and utilize them to generate adversarial datasets for retraining. Through a comparative analysis of projected gradient descent (PGD) and patch-based adversarial attacks, ROSAR demonstrates significant improvements in model robustness and detection accuracy under SSS-specific conditions, enhancing the model's robustness by up to 1.85%. ROSAR is available at https://github.com/remaro-network/ROSAR-framework.

2024

A Transition Towards Virtual Representations of Visual Scenes

Authors
Pereira, A; Carvalho, P; Côrte Real, L;

Publication
Advances in Internet of Things & Embedded Systems

Abstract
We propose a unified architecture for visual scene understanding, aimed at overcoming the limitations of traditional, fragmented approaches in computer vision. Our work focuses on creating a system that accurately and coherently interprets visual scenes, with the ultimate goal to provide a 3D virtual representation, which is particularly useful for applications in virtual and augmented reality. By integrating various visual and semantic processing tasks into a single, adaptable framework, our architecture simplifies the design process, ensuring a seamless and consistent scene interpretation. This is particularly important in complex systems that rely on 3D synthesis, as the need for precise and semantically coherent scene descriptions keeps on growing. Our unified approach addresses these challenges, offering a flexible and efficient solution. We demonstrate the practical effectiveness of our architecture through a proof-of-concept system and explore its potential in various application domains, proving its value in advancing the field of computer vision.

2024

Systematic review on weapon detection in surveillance footage through deep learning

Authors
Santos, T; Oliveira, H; Cunha, A;

Publication
COMPUTER SCIENCE REVIEW

Abstract
In recent years, the number of crimes with weapons has grown on a large scale worldwide, mainly in locations where enforcement is lacking or possessing weapons is legal. It is necessary to combat this type of criminal activity to identify criminal behavior early and allow police and law enforcement agencies immediate action.Despite the human visual structure being highly evolved and able to process images quickly and accurately if an individual watches something very similar for a long time, there is a possibility of slowness and lack of attention. In addition, large surveillance systems with numerous equipment require a surveillance team, which increases the cost of operation. There are several solutions for automatic weapon detection based on computer vision; however, these have limited performance in challenging contexts.A systematic review of the current literature on deep learning-based weapon detection was conducted to identify the methods used, the main characteristics of the existing datasets, and the main problems in the area of automatic weapon detection. The most used models were the Faster R-CNN and the YOLO architecture. The use of realistic images and synthetic data showed improved performance. Several challenges were identified in weapon detection, such as poor lighting conditions and the difficulty of small weapon detection, the last being the most prominent. Finally, some future directions are outlined with a special focus on small weapon detection.

  • 18
  • 368