2019
Authors
Silva, P; Almeida, NT; Campos, R;
Publication
2019 WIRELESS DAYS (WD)
Abstract
Wi-Fi networks lack energy consumption management mechanisms. In particular, during nighttime periods, the energy waste may be significant, since all Access Points (APs) are kept switched on even though there is minimum or null traffic demand. The fact that more than 80% of all wireless traffic is originated or terminated indoor, and served by WiFi, has led the scientific community to look into energy saving mechanisms forWi-Fi networks. State of the art solutions address the problem by switching APs on and off based on manually inserted schedules or by analyzing real-time traffic demand. The first are vendor specific; the second may induce frequent station (STA) handoffs, which has an impact on network performance. The lack of implementability of solutions is also a shortcoming in most works. We propose an algorithm, named Energy Consumption Management Algorithm (ECMA), that learns the daytime and nighttime periods of the Wi-Fi network. ECMA was designed having in mind its implementability over legacyWi-Fi equipment. At daytime, the radio interfaces of the AP (2.4 GHz and 5 GHz) are switched on and off automatically, according to the traffic demand. At nighttime, clusters of APs, covering the same area, are formed, leaving one AP always switched on for basic coverage and the redundant APs swichted off to maximize energy savings, while avoiding coverage and performance hampering. Simulation results show energy savings of up to 50% are possible using the ECMA algorithm.
2019
Authors
Masoudi, M; Khafagy, MG; Conte, A; El Amine, A; Francoise, B; Nadjahi, C; Salem, FE; Labidi, W; Sural, A; Gati, A; Bodere, D; Arikan, E; Aklamanu, F; Louahlia Gualous, H; Lallet, J; Pareek, K; Nuaymi, L; Meunier, L; Silva, P; Almeida, NT; Chahed, T; Sjolund, T; Cavdar, C;
Publication
IEEE ACCESS
Abstract
The heated 5G network deployment race has already begun with the rapid progress in standardization efforts, backed by the current market availability of 5G-enabled network equipment, ongoing 5G spectrum auctions, early launching of non-standalone 5G network services in a few countries, among others. In this paper, we study current and future wireless networks from the viewpoint of energy efficiency (EE) and sustainability to meet the planned network and service evolution toward, along, and beyond 5G, as also inspired by the findings of the EU Celtic-Plus SooGREEN Project. We highlight the opportunities seized by the project efforts to enable and enrich this green nature of the network as compared to existing technologies. In specific, we present innovative means proposed in SooGREEN to monitor and evaluate EE in 5G networks and beyond. Further solutions are presented to reduce energy consumption and carbon footprint in the different network segments. The latter spans proposed virtualized/cloud architectures, efficient polar coding for fronthauling, mobile network powering via renewable energy and smart grid integration, passive cooling, smart sleeping modes in indoor systems, among others. Finally, we shed light on the open opportunities yet to be investigated and leveraged in future developments.
2019
Authors
Watson, S; Zhang, WK; Tavares, J; Figueiredo, J; Cantu, H; Wang, J; Wasige, E; Salgado, H; Pessoa, L; Kelly, A;
Publication
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
Abstract
Optical modulation characteristics of resonant tunneling diode photodetectors (RTD-PD) are investigated. Intensity modulated light excites the RTD-PDs to conduct data experiments. Simple and complex data patterns are used with results showing data rates up to 80 and 200 Mbit/s, respectively. This is the first demonstration of complex modulation using resonant tunneling diodes.
2019
Authors
Zhang, WK; Watson, S; Figueiredo, J; Wang, J; Cantu, HI; Tavares, J; Pessoa, L; Al Khalidi, A; Salgado, H; Wasige, E; Kelly, AE;
Publication
OPTICS EXPRESS
Abstract
We report on the direct intensity modulation characteristics of a high-speed resonant tunneling diode-photodetector (RTD-PD) with an oscillation frequency of 79 GHz. This work demonstrates both electrical and optical modulation and shows that RTD-PD oscillators can be utilized as versatile optoelectronic/radio interfaces. This is the first demonstration of optical modulation of an RF carrier using integrated RTD-PD oscillators at microwave frequencies. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.
2019
Authors
Santos, HM; Pinho, P; Silva, RP; Pinheiro, M; Salgado, HM;
Publication
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS
Abstract
In this letter, a packaged compact meander-line monopole antenna for Bluetooth communications, manufactured in low-density fan-out technology, is presented. A combined size for the antenna and ground plane of 0.1 lambda(0) x 0.06 lambda(0) x 0.008 lambda(0) is obtained. Such small antennas are usually designed considering their connection to an evaluation board with a large ground plane, which improves their gain and bandwidth, but in this letter, the antenna is designed so it can work standalone without any further connection to printed circuit boards. The challenge of designing such a compact antenna is surpassed by performing a detailed modeling of the radiating meander-line element altogether with its finite ground plane, a tuning inductor, and an inductive coupling feed. The antenna model is developed in Ansys HFSS using the finite element method, which is later validated experimentally. Measurements of the return loss radiation pattern are carried out, and final results show a -6 dB bandwidth of approximately 110 MHz and a gain of -8.7 dBi, at 2.42 GHz.
2019
Authors
Pessoa L.M.; Duarte C.; Salgado H.M.; Correia V.; Ferreira B.; Cruz N.A.; Matos A.;
Publication
OCEANS 2019 - Marseille, OCEANS Marseille 2019
Abstract
In this paper we evaluate the long-term deployment feasibility of a large-scale network of abandoned underwater sensors, where power is provided by autonomous underwater vehicles (AUVs) in periodic visits.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.