2019
Authors
Ferreira, JC; Palumbo, F;
Publication
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY
Abstract
2019
Authors
Ferreira, AJ;
Publication
2019 AES INTERNATIONAL CONFERENCE ON AUDIO FORENSICS
Abstract
Automatic speaker identification typically relies on sophisticated statistical modeling and classification which requires large amounts of data for good performance. However, in actual audio forensics casework, frequently only a few seconds of speech material are available. In this paper, we favor diversity in feature extraction, simple modeling and classification, and constructive combination of congruent classification scores. We use phase, spectral magnitude and F0-related features in speaker identification experiments on a database of 35 speakers most of whom are twins. Using only 4.4 sec. of vowel-like sounds per speaker, we characterize the performance that is reached with individual features and we characterize simple and yet effective ways of classification score fusion. Insights for further research are also presented.
2019
Authors
Kandasamy, S; Morla, R; Ramos, P; Ricardo, M;
Publication
WIRELESS NETWORKS
Abstract
In IEEE 802.11 based wireless networks interference increases as more access points are added. A metric helping to quantize this interference seems to be of high interest. In this paper we study the relationship between the improved attacking case metric, which captures interference, and throughput for IEEE 802.11 based network using directional antenna. The y(1/3) = a + b (ln x)(3) model was found to best represent the relationship between the interference metric and the network throughput. We use this model to predict the performance of similar networks and decide the best configuration a network operator could use for planning his network.
2019
Authors
Fontes, H; Cardoso, T; Campos, R; Ricardo, M;
Publication
SIMULATION MODELLING PRACTICE AND THEORY
Abstract
A common problem in networking research and development is the duplicate effort of writing simulation and implementation code of routing protocols. This can be avoided by reusing simulation code in real prototyping and in production environments. In ns-3, emulation mode can be used to run simulation models of routing and Software Defined Networking (SDN) protocols on top of real L2 interfaces such as Ethernet and Wi-Fi. Although this feature is already available, the additional packet processing involved degrades the performance of the nodes and limits the amount of network traffic that can be processed. Our proposal to overcome this performance bottleneck consists in moving the data plane processing operations to outside of the ns-3 process, running such operations natively in the host Operating System (OS). Two approaches are proposed: (a) running the data plane in user space (DPU); (b) running the data plane in kernel space (DPK). Both approaches support the emulation of one or multiple nodes per emulation host machine. The experimental results show that the DPU and DPK approaches significantly improve the throughput by respectively 4.9 and 19 times when compared against traditional ns-3 emulation of a single node. For multiple nodes, the DPK approach further improves the throughput by as much as 23 times. The amount of code reuse is high - e.g., for the routing protocols used in this paper, only 1.4% and 11% of extra code is required to benefit from the performance improvements achieved respectively by the DPK and DPU approaches.
2019
Authors
Marques, C; Kandasamy, S; Sargento, S; Matos, R; Calcada, T; Ricardo, M;
Publication
WIRELESS NETWORKS
Abstract
The high flexibility of the wireless mesh networks (WMNs) physical infrastructure can be exploited to provide communication with different technologies and support for a variety of different services and scenarios. Context information may trigger the need to build different logical networks on top of physical networks, where users can be grouped according to similarity of their context, and can be assigned to the logical networks matching their context. When building logical networks, network virtualization can be a very useful technique allowing a flexible utilization of a physical network infrastructure. Moreover, dynamic resource management using multiple channels and interfaces, directional antennas and power control, is able to provide a higher degree of flexibility in terms of resource allocation among the available virtual networks, to enable isolated and non-interfering communications while maximizing the network efficiency. In this paper we propose a resource management approach that uses transmit power control algorithm with both omnidirectional and directional antennas, to determine the resources of each virtual network while minimizing interference between virtual networks, considering the support of multiple services and users. Each virtual network can be extended to include the nodes of the WMN required by new users. The results of the proposed approach show that the support of multiple virtual networks for multiple services highly improves the network performance when compared to the support of the services in only one virtual network, with no interference minimization nor dynamic resource control.
2019
Authors
Cruz, R; Coelho, A; Campos, R; Ricardo, M;
Publication
2019 INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS (WIMOB)
Abstract
The growth of Internet of Things (IoT) technologies has triggered the development of low-cost solutions characterised by low energy consumption and low complexity. To interconnect these devices, some wireless communications technologies including IEEE 802.11 and IEEE 802.15.4 have been used due to their deployment and management simplicity and high scalability. However, in scenarios where the devices are physically distant or there is a massive number of devices in a reduced area, cellular technologies such as 3rd Generation Partnership Project (3GPP) Narrowband-Internet of Things (NB-IoT) are seen as the solution. This paper proposes a network planning theoretical model for NB-IoT, named NB-IoT Deterministic Link Adaptation Model (NB-DLAM), which can be used to estimate Quality of Service (QoS) metrics such as Packet Delivery Ratio (PDR), transmission time, and throughput. NB-DLAM estimations were compared with simulation results, which show the accuracy of the proposed model.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.