Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CTM

2025

Analysis of Reconfigurable Reflective Unit Cells in Waveguide Environment for Ka and D Band

Authors
Finich, S; Elsaid, M; Inacio, SI; Salgado, HM; Pessoa, LM;

Publication
2025 19TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP

Abstract
A comparative analysis of Ka and D-band unit cells is presented using a Waveguide Simulator and infinite array models with a Floquet port. Initially, a single-unit cell design is employed with a tapered transition section. Subsequently, a 1 x 2-unit cell is designed and integrated into standard rectangular waveguides WR-34 and WR-7. For the Ka-band, the results obtained from both models exhibit excellent agreement in terms of magnitude and phase. In the D-band, the 1 x 2-unit cell demonstrated low loss for both techniques, and the phase responses were reasonably accurate with differences of less than 40 degrees. At such high frequencies (145-175 GHz), the Waveguide Simulator offers a viable solution for assessing the behavior of the unit cell without the need for a full array.

2025

FedGS: Federated Gradient Scaling for Heterogeneous Medical Image Segmentation

Authors
Schutte, P; Corbetta, V; Beets-Tan, R; Silva, W;

Publication
Lecture Notes in Computer Science - Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 Workshops

Abstract

2025

Multi-task Learning Approach for Intracranial Hemorrhage Prognosis

Authors
Cobo, M; del Barrio, AP; Fernández Miranda, PM; Bellón, PS; Iglesias, LL; Silva, W;

Publication
MACHINE LEARNING IN MEDICAL IMAGING, PT II, MLMI 2024

Abstract
Prognosis after intracranial hemorrhage (ICH) is influenced by a complex interplay between imaging and tabular data. Rapid and reliable prognosis are crucial for effective patient stratification and informed treatment decision-making. In this study, we aim to enhance image-based prognosis by learning a robust feature representation shared between prognosis and the clinical and demographic variables most highly correlated with it. Our approach mimics clinical decision-making by reinforcing the model to learn valuable prognostic data embedded in the image. We propose a 3D multi-task image model to predict prognosis, Glasgow Coma Scale and age, improving accuracy and interpretability. Our method outperforms current state-of-the-art baseline image models, and demonstrates superior performance in ICH prognosis compared to four board-certified neuroradiologists using only CT scans as input. We further validate our model with interpretability saliency maps. Code is available at https://github.com/MiriamCobo/MultitaskLearning_ICH_Prognosis.git.

2025

Model compression techniques in biometrics applications: A survey

Authors
Caldeira, E; Neto, PC; Huber, M; Damer, N; Sequeira, AF;

Publication
INFORMATION FUSION

Abstract
The development of deep learning algorithms has extensively empowered humanity's task automatization capacity. However, the huge improvement in the performance of these models is highly correlated with their increasing level of complexity, limiting their usefulness in human-oriented applications, which are usually deployed in resource-constrained devices. This led to the development of compression techniques that drastically reduce the computational and memory costs of deep learning models without significant performance degradation. These compressed models are especially essential when implementing multi-model fusion solutions where multiple models are required to operate simultaneously. This paper aims to systematize the current literature on this topic by presenting a comprehensive survey of model compression techniques in biometrics applications, namely quantization, knowledge distillation and pruning. We conduct a critical analysis of the comparative value of these techniques, focusing on their advantages and disadvantages and presenting suggestions for future work directions that can potentially improve the current methods. Additionally, we discuss and analyze the link between model bias and model compression, highlighting the need to direct compression research toward model fairness in future works.

2025

Editorial: Hemodynamic parameters and cardiovascular changes

Authors
Pereira, T; Gadhoumi, K; Xiao, R;

Publication
FRONTIERS IN PHYSIOLOGY

Abstract
[No abstract available]

2025

Clinical Annotation and Medical Image Anonymization for AI Model Training in Lung Cancer Detection

Authors
Freire, AM; Rodrigues, EM; Sousa, J; Gouveia, M; Santos, DF; Pereira, T; Oliveira, HP; Sousa, P; Silva, AC; Fernandes, MS; Hespanhol, V; Araújo, J;

Publication
Universal Access in Human-Computer Interaction - 19th International Conference, UAHCI 2025, Held as Part of the 27th HCI International Conference, HCII 2025, Gothenburg, Sweden, June 22-27, 2025, Proceedings, Part I

Abstract
Lung cancer remains one of the most common and lethal forms of cancer, with approximately 1.8 million deaths annually, often diagnosed at advanced stages. Early detection is crucial, but it depends on physicians’ accurate interpretation of computed tomography (CT) scans, a process susceptible to human limitations and variability. ByMe has developed a medical image annotation and anonymization tool designed to address these challenges through a human-centered approach. The tool enables physicians to seamlessly add structured attribute-based annotations (e.g., size, location, morphology) directly within their established workflows, ensuring intuitive interaction.Integrated with Picture Archiving and Communication Systems (PACS), the tool streamlines the annotation process and enhances usability by offering a dedicated worklist for retrospective and prospective case analysis. Robust anonymization features ensure compliance with privacy regulations such as the General Data Protection Regulation (GDPR), enabling secure dataset sharing for research and developing artificial intelligence (AI) models. Designed to empower AI integration, the tool not only facilitates the creation of high-quality datasets but also lays the foundation for incorporating AI-driven insights directly into clinical workflows. Focusing on usability, workflow integration, and privacy, this innovation bridges the gap between precision medicine and advanced technology. By providing the means to develop and train AI models for lung cancer detection, it holds the potential to significantly accelerate diagnosis as well as enhance its accuracy and consistency.

  • 11
  • 375