Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CTM

2024

Vision-Radio Experimental Infrastructure Architecture Towards 6G

Authors
Teixeira, FB; Ricardo, M; Coelho, A; Oliveira, HP; Viana, P; Paulino, N; Fontes, H; Marques, P; Campos, R; Pessoa, LM;

Publication
CoRR

Abstract

2024

Autonomous Control and Positioning of a Mobile Radio Access Node Employing the O-RAN Architecture

Authors
Queirós, G; Correia, P; Coelho, A; Ricardo, M;

Publication
2024 19TH WIRELESS ON-DEMAND NETWORK SYSTEMS AND SERVICES CONFERENCE, WONS

Abstract
Over the years, mobile networks were deployed using monolithic hardware based on proprietary solutions. Recently, the concept of open Radio Access Networks (RANs), including the standards and specifications from O-RAN Alliance, has emerged. It aims at enabling open, interoperable networks based on independent virtualized components connected through open interfaces. This paves the way to collect metrics and to control the RAN components by means of software applications such as the O-RAN-specified xApps. We propose a private standalone network leveraged by a mobile RAN employing the O-RAN architecture. The mobile RAN consists of a radio node (gNB) carried by a Mobile Robotic Platform autonomously positioned to provide on-demand wireless connectivity. The proposed solution employs a novel Mobility Management xApp to collect and process metrics from the RAN, while using an original algorithm to define the placement of the mobile RAN. This allows for the improvement of the connectivity offered to the User Equipments.

2024

A Machine Learning App for Monitoring Physical Therapy at Home

Authors
Pereira, B; Cunha, B; Viana, P; Lopes, M; Melo, ASC; Sousa, ASP;

Publication
SENSORS

Abstract
Shoulder rehabilitation is a process that requires physical therapy sessions to recover the mobility of the affected limbs. However, these sessions are often limited by the availability and cost of specialized technicians, as well as the patient's travel to the session locations. This paper presents a novel smartphone-based approach using a pose estimation algorithm to evaluate the quality of the movements and provide feedback, allowing patients to perform autonomous recovery sessions. This paper reviews the state of the art in wearable devices and camera-based systems for human body detection and rehabilitation support and describes the system developed, which uses MediaPipe to extract the coordinates of 33 key points on the patient's body and compares them with reference videos made by professional physiotherapists using cosine similarity and dynamic time warping. This paper also presents a clinical study that uses QTM, an optoelectronic system for motion capture, to validate the methods used by the smartphone application. The results show that there are statistically significant differences between the three methods for different exercises, highlighting the importance of selecting an appropriate method for specific exercises. This paper discusses the implications and limitations of the findings and suggests directions for future research.

2024

Classification of Pulmonary Nodules in 2-[<SUP>18</SUP>F]FDG PET/CT Images with a 3D Convolutional Neural Network

Authors
Alves, VM; Cardoso, JD; Gama, J;

Publication
NUCLEAR MEDICINE AND MOLECULAR IMAGING

Abstract
Purpose 2-[F-18]FDG PET/CT plays an important role in the management of pulmonary nodules. Convolutional neural networks (CNNs) automatically learn features from images and have the potential to improve the discrimination between malignant and benign pulmonary nodules. The purpose of this study was to develop and validate a CNN model for classification of pulmonary nodules from 2-[F-18]FDG PET images.Methods One hundred thirteen participants were retrospectively selected. One nodule per participant. The 2-[F-18]FDG PET images were preprocessed and annotated with the reference standard. The deep learning experiment entailed random data splitting in five sets. A test set was held out for evaluation of the final model. Four-fold cross-validation was performed from the remaining sets for training and evaluating a set of candidate models and for selecting the final model. Models of three types of 3D CNNs architectures were trained from random weight initialization (Stacked 3D CNN, VGG-like and Inception-v2-like models) both in original and augmented datasets. Transfer learning, from ImageNet with ResNet-50, was also used.Results The final model (Stacked 3D CNN model) obtained an area under the ROC curve of 0.8385 (95% CI: 0.6455-1.0000) in the test set. The model had a sensibility of 80.00%, a specificity of 69.23% and an accuracy of 73.91%, in the test set, for an optimised decision threshold that assigns a higher cost to false negatives.Conclusion A 3D CNN model was effective at distinguishing benign from malignant pulmonary nodules in 2-[F-18]FDG PET images.

2024

Active Supervision: Human in the Loop

Authors
Cruz, RPM; Shihavuddin, ASM; Maruf, MH; Cardoso, JS;

Publication
PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2023, PT I

Abstract
After the learning process, certain types of images may not be modeled correctly because they were not well represented in the training set. These failures can then be compensated for by collecting more images from the real-world and incorporating them into the learning process - an expensive process known as active learning. The proposed twist, called active supervision, uses the model itself to change the existing images in the direction where the boundary is less defined and requests feedback from the user on how the new image should be labeled. Experiments in the context of class imbalance show the technique is able to increase model performance in rare classes. Active human supervision helps provide crucial information to the model during training that the training set lacks.

2024

Explaining Bounding Boxes in Deep Object Detectors Using Post Hoc Methods for Autonomous Driving Systems

Authors
Nogueira, C; Fernandes, L; Fernandes, JND; Cardoso, JS;

Publication
SENSORS

Abstract
Deep learning has rapidly increased in popularity, leading to the development of perception solutions for autonomous driving. The latter field leverages techniques developed for computer vision in other domains for accomplishing perception tasks such as object detection. However, the black-box nature of deep neural models and the complexity of the autonomous driving context motivates the study of explainability in these models that perform perception tasks. Moreover, this work explores explainable AI techniques for the object detection task in the context of autonomous driving. An extensive and detailed comparison is carried out between gradient-based and perturbation-based methods (e.g., D-RISE). Moreover, several experimental setups are used with different backbone architectures and different datasets to observe the influence of these aspects in the explanations. All the techniques explored consist of saliency methods, making their interpretation and evaluation primarily visual. Nevertheless, numerical assessment methods are also used. Overall, D-RISE and guided backpropagation obtain more localized explanations. However, D-RISE highlights more meaningful regions, providing more human-understandable explanations. To the best of our knowledge, this is the first approach to obtaining explanations focusing on the regression of the bounding box coordinates.

  • 1
  • 317