2013
Authors
Pereira, I; Madureira, A; Moura Oliveira, PBd; Abraham, A;
Publication
Transactions on Computational Science XXI - Special Issue on Innovations in Nature-Inspired Computing and Applications
Abstract
In complexity theory, scheduling problem is considered as a NP-complete combinatorial optimization problem. Since Multi-Agent Systems manage complex, dynamic and unpredictable environments, in this work they are used to model a scheduling system subject to perturbations. Meta-heuristics proved to be very useful in the resolution of NP-complete problems. However, these techniques require extensive parameter tuning, which is a very hard and time-consuming task to perform. Based on Multi-Agent Learning concepts, this article propose a Case-based Reasoning module in order to solve the parameter-tuning problem in a Multi-Agent Scheduling System. A computational study is performed in order to evaluate the proposed CBR module performance. © 2013 Springer-Verlag Berlin Heidelberg.
2013
Authors
Pereira, I; Madureira, A; de Moura Oliveira, P;
Publication
Intelligent Systems, Control and Automation: Science and Engineering
Abstract
This paper proposes a novel agent-based approach to Meta-Heuristics self-configuration. Meta-heuristics are algorithms with parameters which need to be set up as efficient as possible in order to unsure its performance. A learning module for self-parameterization of Meta-heuristics (MH) in a Multi-Agent System (MAS) for resolution of scheduling problems is proposed in this work. The learning module is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. Finally, some conclusions are reached and future work outlined. © 2013, Springer Science+Business Media Dordrecht.
2022
Authors
Coelho, D; Madureira, A; Pereira, I; Goncalves, R;
Publication
INNOVATIONS IN BIO-INSPIRED COMPUTING AND APPLICATIONS, IBICA 2021
Abstract
In the areas of machine-learning/big data, feature selection is normally regarded as a very important problem to be solved, as it directly impacts both data analysis and model creation. The problem of optimizing the selected features of a given dataset is not always trivial, however, throughout the years various ways to counter this optimization problem have been presented. This work presents how feature-selection fits in the larger context of multi-objective problems as well as a review of how both multi-objective evolutionary algorithms and metaheuristics are being used in order to solve feature selection problems.
2022
Authors
Paulo, M; Migueis, VL; Pereira, I;
Publication
EXPERT SYSTEMS WITH APPLICATIONS
Abstract
Despite being one of the most cost-effective methods, email marketing remains challenging due to the low rate of opened emails and the high percentage of unsubscribed campaigns. Since the sender and the subject line are the only information that the recipient sees at first when receiving an email, the decision to open an email critically depends on these two factors, which should stand out and catch the recipient's attention. Therefore, the motivation behind this study is to support email campaign editors in choosing a subject line based on its potential quality. We propose and compare several models to measure the quality of a subject line, considering its potential to promote the email opening. The subject lines' structure and content are explored together with different machine learning techniques (Random Forest, Decision Trees, Neural Networks, Naive Bayes, Support Vector Machines, and Gradient Boosting). To validate the proposed model, a data set of 140,000 emails' subject lines was used. The results revealed that the models proposed are very promising to support the definition of the email marketing subject lines and show that the combination of data regarding the structure, the content of the subject lines, and senders characteristics leads to more accurate classifications of the potential of the subject line.
2025
Authors
César, I; Pereira, I; Rodrigues, F; Miguéis, VL; Nicola, S; Madureira, A;
Publication
Int. J. Hybrid Intell. Syst.
Abstract
2025
Authors
Batista, A; Torres, JM; Sobral, P; Moreira, RS; Soares, C; Pereira, I;
Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2024, PT I
Abstract
Recommendation systems can play an important role in today's digital content platforms by supporting the suggestion of relevant content in a personalised manner for each customer. Such content customisation has not been consistent across most media domains, and particularly on radio streaming and gaming aggregators, which are the two real-world application domains focused in this work. The challenges faced in these application areas are the dynamic nature of user preferences and the difficulty of generating recommendations for less popular content, due to the overwhelming choice and polarisation of available top content. We present the design and implementation of a Reinforcement Learning-based Recommendation System (RLRS) for web applications, using a Deep Deterministic Policy Gradient (DDPG) agent and, as a reward function, a weighted sum of the user Click Distribution (CD) across the recommended items and the Dwell Time (DT), a measure of the time users spend interacting with those items. Our system has been deployed in real production scenarios with preliminary but promising results. Several metrics are used to track the effectiveness of our approach, such as content coverage, category diversity, and intra-list similarity. In both scenarios tested, the system shows consistent improvement and adaptability over time, reinforcing its applicability.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.