Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Pedro Henriques Abreu

2024

Siamese Autoencoder Architecture for the Imputation of Data Missing Not at Random

Authors
Pereira, RC; Abreu, PH; Rodrigues, PP;

Publication
JOURNAL OF COMPUTATIONAL SCIENCE

Abstract
Missing data is an issue that can negatively impact any task performed with the available data and it is often found in real -world domains such as healthcare. One of the most common strategies to address this issue is to perform imputation, where the missing values are replaced by estimates. Several approaches based on statistics and machine learning techniques have been proposed for this purpose, including deep learning architectures such as generative adversarial networks and autoencoders. In this work, we propose a novel siamese neural network suitable for missing data imputation, which we call Siamese Autoencoder-based Approach for Imputation (SAEI). Besides having a deep autoencoder architecture, SAEI also has a custom loss function and triplet mining strategy that are tailored for the missing data issue. The proposed SAEI approach is compared to seven state-of-the-art imputation methods in an experimental setup that comprises 14 heterogeneous datasets of the healthcare domain injected with Missing Not At Random values at a rate between 10% and 60%. The results show that SAEI significantly outperforms all the remaining imputation methods for all experimented settings, achieving an average improvement of 35%. This work is an extension of the article Siamese Autoencoder-Based Approach for Missing Data Imputation [1] presented at the International Conference on Computational Science 2023. It includes new experiments focused on runtime, generalization capabilities, and the impact of the imputation in classification tasks, where the results show that SAEI is the imputation method that induces the best classification results, improving the F1 scores for 50% of the used datasets.

2024

Imputation of data Missing Not at Random: Artificial generation and benchmark analysis

Authors
Pereira, RC; Abreu, PH; Rodrigues, PP; Figueiredo, MAT;

Publication
EXPERT SYSTEMS WITH APPLICATIONS

Abstract
Experimental assessment of different missing data imputation methods often compute error rates between the original values and the estimated ones. This experimental setup relies on complete datasets that are injected with missing values. The injection process is straightforward for the Missing Completely At Random and Missing At Random mechanisms; however, the Missing Not At Random mechanism poses a major challenge, since the available artificial generation strategies are limited. Furthermore, the studies focused on this latter mechanism tend to disregard a comprehensive baseline of state-of-the-art imputation methods. In this work, both challenges are addressed: four new Missing Not At Random generation strategies are introduced and a benchmark study is conducted to compare six imputation methods in an experimental setup that covers 10 datasets and five missingness levels (10% to 80%). The overall findings are that, for most missing rates and datasets, the best imputation method to deal with Missing Not At Random values is the Multiple Imputation by Chained Equations, whereas for higher missingness rates autoencoders show promising results.

2025

Unveiling Group-Specific Distributed Concept Drift: A Fairness Imperative in Federated Learning

Authors
Salazar, T; Gama, J; Araújo, H; Abreu, PH;

Publication
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Abstract
In the evolving field of machine learning, ensuring group fairness has become a critical concern, prompting the development of algorithms designed to mitigate bias in decision-making processes. Group fairness refers to the principle that a model's decisions should be equitable across different groups defined by sensitive attributes such as gender or race, ensuring that individuals from privileged groups and unprivileged groups are treated fairly and receive similar outcomes. However, achieving fairness in the presence of group-specific concept drift remains an unexplored frontier, and our research represents pioneering efforts in this regard. Group-specific concept drift refers to situations where one group experiences concept drift over time, while another does not, leading to a decrease in fairness even if accuracy (ACC) remains fairly stable. Within the framework of federated learning (FL), where clients collaboratively train models, its distributed nature further amplifies these challenges since each client can experience group-specific concept drift independently while still sharing the same underlying concept, creating a complex and dynamic environment for maintaining fairness. The most significant contribution of our research is the formalization and introduction of the problem of group-specific concept drift and its distributed counterpart, shedding light on its critical importance in the field of fairness. In addition, leveraging insights from prior research, we adapt an existing distributed concept drift adaptation algorithm to tackle group-specific distributed concept drift, which uses a multimodel approach, a local group-specific drift detection mechanism, and continuous clustering of models over time. The findings from our experiments highlight the importance of addressing group-specific concept drift and its distributed counterpart to advance fairness in machine learning.

2023

Evaluating Post-hoc Interpretability with Intrinsic Interpretability

Authors
Amorim, JP; Abreu, PH; Santos, JAM; Müller, H;

Publication
CoRR

Abstract

2023

Bone Metastases Detection in Patients with Breast Cancer: Does Bone Scintigraphy Add Information to PET/CT?

Authors
Santos, JC; Abreu, MH; Santos, MS; Duarte, H; Alpoim, T; Próspero, I; Sousa, S; Abreu, PH;

Publication
ONCOLOGIST

Abstract
This article compares the effectiveness of the PET/CT scan and bone scintigraphy for the detection of bone metastases in patients with breast cancer. Background Positron emission tomography/computed tomography (PET/CT) has become in recent years a tool for breast cancer (BC) staging. However, its accuracy to detect bone metastases is classically considered inferior to bone scintigraphy (BS). The purpose of this work is to compare the effectiveness of bone metastases detection between PET/CT and BS. Materials and Methods Prospective study of 410 female patients treated in a Comprehensive Cancer Center between 2014 and 2020 that performed PET/CT and BS for staging purposes. The image analysis was performed by 2 senior nuclear medicine physicians. The comparison was performed based on accuracy, sensitivity, and specificity on a patient and anatomical region level and was assessed using McNemar's Test. An average ROC was calculated for the anatomical region analysis. Results PET/CT presented higher values of accuracy and sensitivity (98.0% and 93.83%), surpassing BS (95.61% and 81.48%) in detecting bone disease. There was a significant difference in favor of PET/CT (sensitivity 93.83% vs. 81.48%), however, there is no significant difference in eliminating false positives (specificity 99.09% vs. 99.09%). PET/CT presented the highest accuracy and sensitivity values for most of the bone segments, only surpassed by BS for the cranium. There was a significant difference in favor of PET/CT in the upper limb, spine, thorax (sternum) and lower limb (pelvis and sacrum), and in favor of BS in the cranium. The ROC showed that PET/CT has a higher sensitivity and consistency across the bone segments. Conclusion With the correct imaging protocol, PET/CT does not require BS for patients with BC staging.

2023

A global taxonomy of interpretable AI: unifying the terminology for the technical and social sciences

Authors
Graziani, M; Dutkiewicz, L; Calvaresi, D; Amorim, JP; Yordanova, K; Vered, M; Nair, R; Abreu, PH; Blanke, T; Pulignano, V; Prior, JO; Lauwaert, L; Reijers, W; Depeursinge, A; Andrearczyk, V; Müller, H;

Publication
ARTIFICIAL INTELLIGENCE REVIEW

Abstract
Since its emergence in the 1960s, Artificial Intelligence (AI) has grown to conquer many technology products and their fields of application. Machine learning, as a major part of the current AI solutions, can learn from the data and through experience to reach high performance on various tasks. This growing success of AI algorithms has led to a need for interpretability to understand opaque models such as deep neural networks. Various requirements have been raised from different domains, together with numerous tools to debug, justify outcomes, and establish the safety, fairness and reliability of the models. This variety of tasks has led to inconsistencies in the terminology with, for instance, terms such as interpretable, explainable and transparent being often used interchangeably in methodology papers. These words, however, convey different meanings and are weighted differently across domains, for example in the technical and social sciences. In this paper, we propose an overarching terminology of interpretability of AI systems that can be referred to by the technical developers as much as by the social sciences community to pursue clarity and efficiency in the definition of regulations for ethical and reliable AI development. We show how our taxonomy and definition of interpretable AI differ from the ones in previous research and how they apply with high versatility to several domains and use cases, proposing a-highly needed-standard for the communication among interdisciplinary areas of AI.

  • 11
  • 21